Loading…

Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere

The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, am...

Full description

Saved in:
Bibliographic Details
Published in:Geosphere (Boulder, Colo.) Colo.), 2008-10, Vol.4 (5), p.829-853
Main Authors: Cousens, Brian, Prytulak, Julie, Henry, Christopher, Alcazar, Al, Brownrigg, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733
cites cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733
container_end_page 853
container_issue 5
container_start_page 829
container_title Geosphere (Boulder, Colo.)
container_volume 4
creator Cousens, Brian
Prytulak, Julie
Henry, Christopher
Alcazar, Al
Brownrigg, Tim
description The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.
doi_str_mv 10.1130/GES00166.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20292492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20292492</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</originalsourceid><addsrcrecordid>eNpVkd1uEzEQhVcIJErhhifwFReQLf7ZzWbFVRWVgFR-pILEnTWxx4krx17Gu1R5VN4GtxskuPJ49Pmc8Zmqein4hRCKv91c3XAulssL8ag6E22rat7wH4__qZ9Wz3K-5Vz1rZJn1e8NppB2xwXbYTJ7SvF0hWjnFh58HunIkmPjHtknnwxGrL-GuSigwQJAYGvIBixmdklmwWKiwlNkNx6JgH3GX2BhUajgXaLo4cFjbr970KYUyuuT0TQMSOwAcQy4YHna2smMPu5YDrCd57vH_lNnwY_7lIfii8-rJw5Cxhen87z6_v7q2_pDff1l83F9eV2DaruxNr1tmm7FpZVSORBLFMa4rkPhJEgHy5Zb1Yi-77jdOmONUM22Q-iELQF2Sp1Xr2bdgdLPqUShS2AGQ4CIacpactnLppcFfD2DhlLOhE4P5A9ARy24vt-e_rs9LQr8ZobLDrLxWEK-SxSsvk0TxfKfostXWshVv2rUH7Krn7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20292492</pqid></control><display><type>article</type><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><source>Freely Accessible Journals</source><creator>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</creator><creatorcontrib>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</creatorcontrib><description>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</description><identifier>ISSN: 1553-040X</identifier><identifier>EISSN: 1553-040X</identifier><identifier>DOI: 10.1130/GES00166.1</identifier><language>eng</language><publisher>Geological Society of America</publisher><subject>absolute age ; alkaline earth metals ; Ar/Ar ; asthenosphere ; California ; Cenozoic ; chemical composition ; concentration ; dates ; electron probe data ; geochemistry ; Geophysics ; hot spots ; igneous and metamorphic rocks ; igneous rocks ; isotope ratios ; isotopes ; K/Ar ; Lake Tahoe ; lava ; lead ; lithosphere ; magmas ; magmatism ; major elements ; mantle ; metals ; Miocene ; Nd-144/Nd-143 ; neodymium ; Neogene ; Nevada ; northeastern California ; northern Sierra Nevada ; O-18/O-16 ; oxygen ; Pb-206/Pb-204 ; petrography ; Petrology ; plate tectonics ; Pliocene ; radioactive isotopes ; rare earths ; Sierra Nevada ; slabs ; solid Earth (tectonophysics) ; Sr-87/Sr-86 ; stable isotopes ; strontium ; subduction zones ; Tertiary ; trace elements ; United States ; volcanic rocks ; volcaniclastics ; volcanism ; western Nevada</subject><ispartof>Geosphere (Boulder, Colo.), 2008-10, Vol.4 (5), p.829-853</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</citedby><cites>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cousens, Brian</creatorcontrib><creatorcontrib>Prytulak, Julie</creatorcontrib><creatorcontrib>Henry, Christopher</creatorcontrib><creatorcontrib>Alcazar, Al</creatorcontrib><creatorcontrib>Brownrigg, Tim</creatorcontrib><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><title>Geosphere (Boulder, Colo.)</title><description>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</description><subject>absolute age</subject><subject>alkaline earth metals</subject><subject>Ar/Ar</subject><subject>asthenosphere</subject><subject>California</subject><subject>Cenozoic</subject><subject>chemical composition</subject><subject>concentration</subject><subject>dates</subject><subject>electron probe data</subject><subject>geochemistry</subject><subject>Geophysics</subject><subject>hot spots</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>K/Ar</subject><subject>Lake Tahoe</subject><subject>lava</subject><subject>lead</subject><subject>lithosphere</subject><subject>magmas</subject><subject>magmatism</subject><subject>major elements</subject><subject>mantle</subject><subject>metals</subject><subject>Miocene</subject><subject>Nd-144/Nd-143</subject><subject>neodymium</subject><subject>Neogene</subject><subject>Nevada</subject><subject>northeastern California</subject><subject>northern Sierra Nevada</subject><subject>O-18/O-16</subject><subject>oxygen</subject><subject>Pb-206/Pb-204</subject><subject>petrography</subject><subject>Petrology</subject><subject>plate tectonics</subject><subject>Pliocene</subject><subject>radioactive isotopes</subject><subject>rare earths</subject><subject>Sierra Nevada</subject><subject>slabs</subject><subject>solid Earth (tectonophysics)</subject><subject>Sr-87/Sr-86</subject><subject>stable isotopes</subject><subject>strontium</subject><subject>subduction zones</subject><subject>Tertiary</subject><subject>trace elements</subject><subject>United States</subject><subject>volcanic rocks</subject><subject>volcaniclastics</subject><subject>volcanism</subject><subject>western Nevada</subject><issn>1553-040X</issn><issn>1553-040X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkd1uEzEQhVcIJErhhifwFReQLf7ZzWbFVRWVgFR-pILEnTWxx4krx17Gu1R5VN4GtxskuPJ49Pmc8Zmqein4hRCKv91c3XAulssL8ag6E22rat7wH4__qZ9Wz3K-5Vz1rZJn1e8NppB2xwXbYTJ7SvF0hWjnFh58HunIkmPjHtknnwxGrL-GuSigwQJAYGvIBixmdklmwWKiwlNkNx6JgH3GX2BhUajgXaLo4cFjbr970KYUyuuT0TQMSOwAcQy4YHna2smMPu5YDrCd57vH_lNnwY_7lIfii8-rJw5Cxhen87z6_v7q2_pDff1l83F9eV2DaruxNr1tmm7FpZVSORBLFMa4rkPhJEgHy5Zb1Yi-77jdOmONUM22Q-iELQF2Sp1Xr2bdgdLPqUShS2AGQ4CIacpactnLppcFfD2DhlLOhE4P5A9ARy24vt-e_rs9LQr8ZobLDrLxWEK-SxSsvk0TxfKfostXWshVv2rUH7Krn7g</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Cousens, Brian</creator><creator>Prytulak, Julie</creator><creator>Henry, Christopher</creator><creator>Alcazar, Al</creator><creator>Brownrigg, Tim</creator><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20081001</creationdate><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><author>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>absolute age</topic><topic>alkaline earth metals</topic><topic>Ar/Ar</topic><topic>asthenosphere</topic><topic>California</topic><topic>Cenozoic</topic><topic>chemical composition</topic><topic>concentration</topic><topic>dates</topic><topic>electron probe data</topic><topic>geochemistry</topic><topic>Geophysics</topic><topic>hot spots</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>K/Ar</topic><topic>Lake Tahoe</topic><topic>lava</topic><topic>lead</topic><topic>lithosphere</topic><topic>magmas</topic><topic>magmatism</topic><topic>major elements</topic><topic>mantle</topic><topic>metals</topic><topic>Miocene</topic><topic>Nd-144/Nd-143</topic><topic>neodymium</topic><topic>Neogene</topic><topic>Nevada</topic><topic>northeastern California</topic><topic>northern Sierra Nevada</topic><topic>O-18/O-16</topic><topic>oxygen</topic><topic>Pb-206/Pb-204</topic><topic>petrography</topic><topic>Petrology</topic><topic>plate tectonics</topic><topic>Pliocene</topic><topic>radioactive isotopes</topic><topic>rare earths</topic><topic>Sierra Nevada</topic><topic>slabs</topic><topic>solid Earth (tectonophysics)</topic><topic>Sr-87/Sr-86</topic><topic>stable isotopes</topic><topic>strontium</topic><topic>subduction zones</topic><topic>Tertiary</topic><topic>trace elements</topic><topic>United States</topic><topic>volcanic rocks</topic><topic>volcaniclastics</topic><topic>volcanism</topic><topic>western Nevada</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cousens, Brian</creatorcontrib><creatorcontrib>Prytulak, Julie</creatorcontrib><creatorcontrib>Henry, Christopher</creatorcontrib><creatorcontrib>Alcazar, Al</creatorcontrib><creatorcontrib>Brownrigg, Tim</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geosphere (Boulder, Colo.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cousens, Brian</au><au>Prytulak, Julie</au><au>Henry, Christopher</au><au>Alcazar, Al</au><au>Brownrigg, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</atitle><jtitle>Geosphere (Boulder, Colo.)</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>4</volume><issue>5</issue><spage>829</spage><epage>853</epage><pages>829-853</pages><issn>1553-040X</issn><eissn>1553-040X</eissn><abstract>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</abstract><pub>Geological Society of America</pub><doi>10.1130/GES00166.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-040X
ispartof Geosphere (Boulder, Colo.), 2008-10, Vol.4 (5), p.829-853
issn 1553-040X
1553-040X
language eng
recordid cdi_proquest_miscellaneous_20292492
source Freely Accessible Journals
subjects absolute age
alkaline earth metals
Ar/Ar
asthenosphere
California
Cenozoic
chemical composition
concentration
dates
electron probe data
geochemistry
Geophysics
hot spots
igneous and metamorphic rocks
igneous rocks
isotope ratios
isotopes
K/Ar
Lake Tahoe
lava
lead
lithosphere
magmas
magmatism
major elements
mantle
metals
Miocene
Nd-144/Nd-143
neodymium
Neogene
Nevada
northeastern California
northern Sierra Nevada
O-18/O-16
oxygen
Pb-206/Pb-204
petrography
Petrology
plate tectonics
Pliocene
radioactive isotopes
rare earths
Sierra Nevada
slabs
solid Earth (tectonophysics)
Sr-87/Sr-86
stable isotopes
strontium
subduction zones
Tertiary
trace elements
United States
volcanic rocks
volcaniclastics
volcanism
western Nevada
title Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geology,%20geochronology,%20and%20geochemistry%20of%20the%20Miocene-Pliocene%20ancestral%20Cascades%20Arc,%20northern%20Sierra%20Nevada,%20California%20and%20Nevada;%20the%20roles%20of%20the%20upper%20mantle,%20subducting%20slab,%20and%20the%20Sierra%20Nevada%20lithosphere&rft.jtitle=Geosphere%20(Boulder,%20Colo.)&rft.au=Cousens,%20Brian&rft.date=2008-10-01&rft.volume=4&rft.issue=5&rft.spage=829&rft.epage=853&rft.pages=829-853&rft.issn=1553-040X&rft.eissn=1553-040X&rft_id=info:doi/10.1130/GES00166.1&rft_dat=%3Cproquest_cross%3E20292492%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20292492&rft_id=info:pmid/&rfr_iscdi=true