Loading…
Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere
The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, am...
Saved in:
Published in: | Geosphere (Boulder, Colo.) Colo.), 2008-10, Vol.4 (5), p.829-853 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733 |
---|---|
cites | cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733 |
container_end_page | 853 |
container_issue | 5 |
container_start_page | 829 |
container_title | Geosphere (Boulder, Colo.) |
container_volume | 4 |
creator | Cousens, Brian Prytulak, Julie Henry, Christopher Alcazar, Al Brownrigg, Tim |
description | The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades. |
doi_str_mv | 10.1130/GES00166.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20292492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20292492</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</originalsourceid><addsrcrecordid>eNpVkd1uEzEQhVcIJErhhifwFReQLf7ZzWbFVRWVgFR-pILEnTWxx4krx17Gu1R5VN4GtxskuPJ49Pmc8Zmqein4hRCKv91c3XAulssL8ag6E22rat7wH4__qZ9Wz3K-5Vz1rZJn1e8NppB2xwXbYTJ7SvF0hWjnFh58HunIkmPjHtknnwxGrL-GuSigwQJAYGvIBixmdklmwWKiwlNkNx6JgH3GX2BhUajgXaLo4cFjbr970KYUyuuT0TQMSOwAcQy4YHna2smMPu5YDrCd57vH_lNnwY_7lIfii8-rJw5Cxhen87z6_v7q2_pDff1l83F9eV2DaruxNr1tmm7FpZVSORBLFMa4rkPhJEgHy5Zb1Yi-77jdOmONUM22Q-iELQF2Sp1Xr2bdgdLPqUShS2AGQ4CIacpactnLppcFfD2DhlLOhE4P5A9ARy24vt-e_rs9LQr8ZobLDrLxWEK-SxSsvk0TxfKfostXWshVv2rUH7Krn7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20292492</pqid></control><display><type>article</type><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><source>Freely Accessible Journals</source><creator>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</creator><creatorcontrib>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</creatorcontrib><description>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</description><identifier>ISSN: 1553-040X</identifier><identifier>EISSN: 1553-040X</identifier><identifier>DOI: 10.1130/GES00166.1</identifier><language>eng</language><publisher>Geological Society of America</publisher><subject>absolute age ; alkaline earth metals ; Ar/Ar ; asthenosphere ; California ; Cenozoic ; chemical composition ; concentration ; dates ; electron probe data ; geochemistry ; Geophysics ; hot spots ; igneous and metamorphic rocks ; igneous rocks ; isotope ratios ; isotopes ; K/Ar ; Lake Tahoe ; lava ; lead ; lithosphere ; magmas ; magmatism ; major elements ; mantle ; metals ; Miocene ; Nd-144/Nd-143 ; neodymium ; Neogene ; Nevada ; northeastern California ; northern Sierra Nevada ; O-18/O-16 ; oxygen ; Pb-206/Pb-204 ; petrography ; Petrology ; plate tectonics ; Pliocene ; radioactive isotopes ; rare earths ; Sierra Nevada ; slabs ; solid Earth (tectonophysics) ; Sr-87/Sr-86 ; stable isotopes ; strontium ; subduction zones ; Tertiary ; trace elements ; United States ; volcanic rocks ; volcaniclastics ; volcanism ; western Nevada</subject><ispartof>Geosphere (Boulder, Colo.), 2008-10, Vol.4 (5), p.829-853</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</citedby><cites>FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cousens, Brian</creatorcontrib><creatorcontrib>Prytulak, Julie</creatorcontrib><creatorcontrib>Henry, Christopher</creatorcontrib><creatorcontrib>Alcazar, Al</creatorcontrib><creatorcontrib>Brownrigg, Tim</creatorcontrib><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><title>Geosphere (Boulder, Colo.)</title><description>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</description><subject>absolute age</subject><subject>alkaline earth metals</subject><subject>Ar/Ar</subject><subject>asthenosphere</subject><subject>California</subject><subject>Cenozoic</subject><subject>chemical composition</subject><subject>concentration</subject><subject>dates</subject><subject>electron probe data</subject><subject>geochemistry</subject><subject>Geophysics</subject><subject>hot spots</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>K/Ar</subject><subject>Lake Tahoe</subject><subject>lava</subject><subject>lead</subject><subject>lithosphere</subject><subject>magmas</subject><subject>magmatism</subject><subject>major elements</subject><subject>mantle</subject><subject>metals</subject><subject>Miocene</subject><subject>Nd-144/Nd-143</subject><subject>neodymium</subject><subject>Neogene</subject><subject>Nevada</subject><subject>northeastern California</subject><subject>northern Sierra Nevada</subject><subject>O-18/O-16</subject><subject>oxygen</subject><subject>Pb-206/Pb-204</subject><subject>petrography</subject><subject>Petrology</subject><subject>plate tectonics</subject><subject>Pliocene</subject><subject>radioactive isotopes</subject><subject>rare earths</subject><subject>Sierra Nevada</subject><subject>slabs</subject><subject>solid Earth (tectonophysics)</subject><subject>Sr-87/Sr-86</subject><subject>stable isotopes</subject><subject>strontium</subject><subject>subduction zones</subject><subject>Tertiary</subject><subject>trace elements</subject><subject>United States</subject><subject>volcanic rocks</subject><subject>volcaniclastics</subject><subject>volcanism</subject><subject>western Nevada</subject><issn>1553-040X</issn><issn>1553-040X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkd1uEzEQhVcIJErhhifwFReQLf7ZzWbFVRWVgFR-pILEnTWxx4krx17Gu1R5VN4GtxskuPJ49Pmc8Zmqein4hRCKv91c3XAulssL8ag6E22rat7wH4__qZ9Wz3K-5Vz1rZJn1e8NppB2xwXbYTJ7SvF0hWjnFh58HunIkmPjHtknnwxGrL-GuSigwQJAYGvIBixmdklmwWKiwlNkNx6JgH3GX2BhUajgXaLo4cFjbr970KYUyuuT0TQMSOwAcQy4YHna2smMPu5YDrCd57vH_lNnwY_7lIfii8-rJw5Cxhen87z6_v7q2_pDff1l83F9eV2DaruxNr1tmm7FpZVSORBLFMa4rkPhJEgHy5Zb1Yi-77jdOmONUM22Q-iELQF2Sp1Xr2bdgdLPqUShS2AGQ4CIacpactnLppcFfD2DhlLOhE4P5A9ARy24vt-e_rs9LQr8ZobLDrLxWEK-SxSsvk0TxfKfostXWshVv2rUH7Krn7g</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Cousens, Brian</creator><creator>Prytulak, Julie</creator><creator>Henry, Christopher</creator><creator>Alcazar, Al</creator><creator>Brownrigg, Tim</creator><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20081001</creationdate><title>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</title><author>Cousens, Brian ; Prytulak, Julie ; Henry, Christopher ; Alcazar, Al ; Brownrigg, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>absolute age</topic><topic>alkaline earth metals</topic><topic>Ar/Ar</topic><topic>asthenosphere</topic><topic>California</topic><topic>Cenozoic</topic><topic>chemical composition</topic><topic>concentration</topic><topic>dates</topic><topic>electron probe data</topic><topic>geochemistry</topic><topic>Geophysics</topic><topic>hot spots</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>K/Ar</topic><topic>Lake Tahoe</topic><topic>lava</topic><topic>lead</topic><topic>lithosphere</topic><topic>magmas</topic><topic>magmatism</topic><topic>major elements</topic><topic>mantle</topic><topic>metals</topic><topic>Miocene</topic><topic>Nd-144/Nd-143</topic><topic>neodymium</topic><topic>Neogene</topic><topic>Nevada</topic><topic>northeastern California</topic><topic>northern Sierra Nevada</topic><topic>O-18/O-16</topic><topic>oxygen</topic><topic>Pb-206/Pb-204</topic><topic>petrography</topic><topic>Petrology</topic><topic>plate tectonics</topic><topic>Pliocene</topic><topic>radioactive isotopes</topic><topic>rare earths</topic><topic>Sierra Nevada</topic><topic>slabs</topic><topic>solid Earth (tectonophysics)</topic><topic>Sr-87/Sr-86</topic><topic>stable isotopes</topic><topic>strontium</topic><topic>subduction zones</topic><topic>Tertiary</topic><topic>trace elements</topic><topic>United States</topic><topic>volcanic rocks</topic><topic>volcaniclastics</topic><topic>volcanism</topic><topic>western Nevada</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cousens, Brian</creatorcontrib><creatorcontrib>Prytulak, Julie</creatorcontrib><creatorcontrib>Henry, Christopher</creatorcontrib><creatorcontrib>Alcazar, Al</creatorcontrib><creatorcontrib>Brownrigg, Tim</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geosphere (Boulder, Colo.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cousens, Brian</au><au>Prytulak, Julie</au><au>Henry, Christopher</au><au>Alcazar, Al</au><au>Brownrigg, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere</atitle><jtitle>Geosphere (Boulder, Colo.)</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>4</volume><issue>5</issue><spage>829</spage><epage>853</epage><pages>829-853</pages><issn>1553-040X</issn><eissn>1553-040X</eissn><abstract>The assemblage of ca. 28-3 Ma volcanic rocks exposed in the Lake Tahoe-Reno region of the northern Sierra Nevada, United States, is interpreted to be part of the Ancestral Cascades volcanic arc. The volcanic rocks are commonly highly porphyritic, including abundant plagioclase with clinopyroxene, amphibole, and rare biotite, and range from basaltic andesite to dacite in composition. Less common are poorly phyric, olivine- and clinopyroxene-bearing basalts and basaltic andesites. Porphyritic lavas dominate composite volcanic centers, whereas the poorly phyric lavas form isolated cinder cone and lava flow complexes. Tahoe-Reno arc lavas are calc-alkaline, enriched in the large ion lithophile elements but depleted in Nb and Ta relative to the light rare earth elements, and have highly variable radiogenic isotopic compositions. Compared to the modern south Cascade arc, Tahoe-Reno region basalts are enriched in the light rare earth and large ion lithophile elements and have higher 87Sr/86Sr and lower 143Nd/144Nd that are consistent with an old, subduction-modified lithospheric mantle source, such as that proposed for lavas of the Western Great Basin. Melting of the lithospheric mantle may be enhanced by fluid flux from the subducting slab if the Juan de Fuca slab dip is shallow. Andesites and dacites evolved from basaltic magmas by a combination of fractional crystallization and assimilation of lower crustal melts. Available geochronological data indicate that the westward sweep of Cenozoic volcanism through Nevada was associated with steepening of the slab dip, but the dip angle was lower during Miocene-Pliocene arc volcanism than it is today beneath the modern south Cascades.</abstract><pub>Geological Society of America</pub><doi>10.1130/GES00166.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-040X |
ispartof | Geosphere (Boulder, Colo.), 2008-10, Vol.4 (5), p.829-853 |
issn | 1553-040X 1553-040X |
language | eng |
recordid | cdi_proquest_miscellaneous_20292492 |
source | Freely Accessible Journals |
subjects | absolute age alkaline earth metals Ar/Ar asthenosphere California Cenozoic chemical composition concentration dates electron probe data geochemistry Geophysics hot spots igneous and metamorphic rocks igneous rocks isotope ratios isotopes K/Ar Lake Tahoe lava lead lithosphere magmas magmatism major elements mantle metals Miocene Nd-144/Nd-143 neodymium Neogene Nevada northeastern California northern Sierra Nevada O-18/O-16 oxygen Pb-206/Pb-204 petrography Petrology plate tectonics Pliocene radioactive isotopes rare earths Sierra Nevada slabs solid Earth (tectonophysics) Sr-87/Sr-86 stable isotopes strontium subduction zones Tertiary trace elements United States volcanic rocks volcaniclastics volcanism western Nevada |
title | Geology, geochronology, and geochemistry of the Miocene-Pliocene ancestral Cascades Arc, northern Sierra Nevada, California and Nevada; the roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geology,%20geochronology,%20and%20geochemistry%20of%20the%20Miocene-Pliocene%20ancestral%20Cascades%20Arc,%20northern%20Sierra%20Nevada,%20California%20and%20Nevada;%20the%20roles%20of%20the%20upper%20mantle,%20subducting%20slab,%20and%20the%20Sierra%20Nevada%20lithosphere&rft.jtitle=Geosphere%20(Boulder,%20Colo.)&rft.au=Cousens,%20Brian&rft.date=2008-10-01&rft.volume=4&rft.issue=5&rft.spage=829&rft.epage=853&rft.pages=829-853&rft.issn=1553-040X&rft.eissn=1553-040X&rft_id=info:doi/10.1130/GES00166.1&rft_dat=%3Cproquest_cross%3E20292492%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a357t-c9d447802d223fa16e1ccf77e1f2a2fa650d3419970dbfcdc134b7ea71d532733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20292492&rft_id=info:pmid/&rfr_iscdi=true |