Loading…

Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease

ABSTRACT Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2018-10, Vol.32 (10), p.5350-5364
Main Authors: Stykel, Morgan G., Humphries, Kayla, Kirby, Mathew P., Czaniecki, Chris, Wang, Tinya, Ryan, Tammy, Bamm, Vladimir, Ryan, Scott D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013
cites cdi_FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013
container_end_page 5364
container_issue 10
container_start_page 5350
container_title The FASEB journal
container_volume 32
creator Stykel, Morgan G.
Humphries, Kayla
Kirby, Mathew P.
Czaniecki, Chris
Wang, Tinya
Ryan, Tammy
Bamm, Vladimir
Ryan, Scott D.
description ABSTRACT Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient‐derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α‐synuclein (a‐syn) gene (SNCA‐A53T) against isogenic, mutation‐corrected controls, we describe a novel mechanism whereby NO, generated from SNCA‐A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α‐tubulin (α‐Tub). Nitration of α‐Tub inhibited the association of both α‐syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α‐Tub in the C‐terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω‐nitro‐L‐arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA‐ A53T mutation.—Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J. 32, 5350–5364 (2018). www.fasebj.org
doi_str_mv 10.1096/fj.201700759RR
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2030917209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030917209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRq0KRJeFK0fkG71kGceNYx84QNWFVlVbLXCO7GSsepvYwXZUeuC_N6ttq944WSO_783oI-QDgxUDJT7b7aoEVgPUldpsDsiCVRwKIQW8IguQqiyE4PKQvE1pCwAMmHhDDkslpJSsXJB_ly5HnV3wNFg6uDaGPJmpx0RNH9rbRPXf4HU_f-XQ3gTfRTdPc8anMcRMnaea3kyD9nTsp-jGkNFnmjIOtMV-DoYO-538Wsdb51PwnxLtXEKd8B15bXWf8P3juyS_16e_Tn4UF1ffz06-XhQtl2pTdDU3jFcGUBm0vK6OTSsQFJdcs9ow25Vat3WnhKnB2gorrsBUgh9XWrbA-JIc7b1jDH8mTLkZXNpdpz2GKTUlcFCsLmflkqz26NxEShFtM0Y36HjfMGh2lTd227yofA58fHRPZsDuGX_qeAa-7IE71-P9f3TN-ue3cn3-csEDg42RXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030917209</pqid></control><display><type>article</type><title>Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Stykel, Morgan G. ; Humphries, Kayla ; Kirby, Mathew P. ; Czaniecki, Chris ; Wang, Tinya ; Ryan, Tammy ; Bamm, Vladimir ; Ryan, Scott D.</creator><creatorcontrib>Stykel, Morgan G. ; Humphries, Kayla ; Kirby, Mathew P. ; Czaniecki, Chris ; Wang, Tinya ; Ryan, Tammy ; Bamm, Vladimir ; Ryan, Scott D.</creatorcontrib><description>ABSTRACT Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient‐derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α‐synuclein (a‐syn) gene (SNCA‐A53T) against isogenic, mutation‐corrected controls, we describe a novel mechanism whereby NO, generated from SNCA‐A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α‐tubulin (α‐Tub). Nitration of α‐Tub inhibited the association of both α‐syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α‐Tub in the C‐terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω‐nitro‐L‐arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA‐ A53T mutation.—Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J. 32, 5350–5364 (2018). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201700759RR</identifier><identifier>PMID: 29688812</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>alpha-Synuclein - genetics ; alpha-Synuclein - metabolism ; Amino Acid Substitution ; anterograde transport ; Axonal Transport ; Axons - metabolism ; Axons - pathology ; Cell Line ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; isogenic hiPSCs ; Microtubules - genetics ; Microtubules - metabolism ; Microtubules - pathology ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Models, Biological ; Mutation, Missense ; neurodegeneration ; Nitric Oxide - genetics ; Nitric Oxide - metabolism ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Protein Transport - genetics ; reactive nitrogen species ; Tubulin - genetics ; Tubulin - metabolism ; tubulin nitration</subject><ispartof>The FASEB journal, 2018-10, Vol.32 (10), p.5350-5364</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013</citedby><cites>FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29688812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stykel, Morgan G.</creatorcontrib><creatorcontrib>Humphries, Kayla</creatorcontrib><creatorcontrib>Kirby, Mathew P.</creatorcontrib><creatorcontrib>Czaniecki, Chris</creatorcontrib><creatorcontrib>Wang, Tinya</creatorcontrib><creatorcontrib>Ryan, Tammy</creatorcontrib><creatorcontrib>Bamm, Vladimir</creatorcontrib><creatorcontrib>Ryan, Scott D.</creatorcontrib><title>Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient‐derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α‐synuclein (a‐syn) gene (SNCA‐A53T) against isogenic, mutation‐corrected controls, we describe a novel mechanism whereby NO, generated from SNCA‐A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α‐tubulin (α‐Tub). Nitration of α‐Tub inhibited the association of both α‐syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α‐Tub in the C‐terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω‐nitro‐L‐arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA‐ A53T mutation.—Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J. 32, 5350–5364 (2018). www.fasebj.org</description><subject>alpha-Synuclein - genetics</subject><subject>alpha-Synuclein - metabolism</subject><subject>Amino Acid Substitution</subject><subject>anterograde transport</subject><subject>Axonal Transport</subject><subject>Axons - metabolism</subject><subject>Axons - pathology</subject><subject>Cell Line</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>isogenic hiPSCs</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - pathology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Models, Biological</subject><subject>Mutation, Missense</subject><subject>neurodegeneration</subject><subject>Nitric Oxide - genetics</subject><subject>Nitric Oxide - metabolism</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Protein Transport - genetics</subject><subject>reactive nitrogen species</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>tubulin nitration</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQRq0KRJeFK0fkG71kGceNYx84QNWFVlVbLXCO7GSsepvYwXZUeuC_N6ttq944WSO_783oI-QDgxUDJT7b7aoEVgPUldpsDsiCVRwKIQW8IguQqiyE4PKQvE1pCwAMmHhDDkslpJSsXJB_ly5HnV3wNFg6uDaGPJmpx0RNH9rbRPXf4HU_f-XQ3gTfRTdPc8anMcRMnaea3kyD9nTsp-jGkNFnmjIOtMV-DoYO-538Wsdb51PwnxLtXEKd8B15bXWf8P3juyS_16e_Tn4UF1ffz06-XhQtl2pTdDU3jFcGUBm0vK6OTSsQFJdcs9ow25Vat3WnhKnB2gorrsBUgh9XWrbA-JIc7b1jDH8mTLkZXNpdpz2GKTUlcFCsLmflkqz26NxEShFtM0Y36HjfMGh2lTd227yofA58fHRPZsDuGX_qeAa-7IE71-P9f3TN-ue3cn3-csEDg42RXQ</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Stykel, Morgan G.</creator><creator>Humphries, Kayla</creator><creator>Kirby, Mathew P.</creator><creator>Czaniecki, Chris</creator><creator>Wang, Tinya</creator><creator>Ryan, Tammy</creator><creator>Bamm, Vladimir</creator><creator>Ryan, Scott D.</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease</title><author>Stykel, Morgan G. ; Humphries, Kayla ; Kirby, Mathew P. ; Czaniecki, Chris ; Wang, Tinya ; Ryan, Tammy ; Bamm, Vladimir ; Ryan, Scott D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alpha-Synuclein - genetics</topic><topic>alpha-Synuclein - metabolism</topic><topic>Amino Acid Substitution</topic><topic>anterograde transport</topic><topic>Axonal Transport</topic><topic>Axons - metabolism</topic><topic>Axons - pathology</topic><topic>Cell Line</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>isogenic hiPSCs</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - pathology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Models, Biological</topic><topic>Mutation, Missense</topic><topic>neurodegeneration</topic><topic>Nitric Oxide - genetics</topic><topic>Nitric Oxide - metabolism</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Protein Transport - genetics</topic><topic>reactive nitrogen species</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>tubulin nitration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stykel, Morgan G.</creatorcontrib><creatorcontrib>Humphries, Kayla</creatorcontrib><creatorcontrib>Kirby, Mathew P.</creatorcontrib><creatorcontrib>Czaniecki, Chris</creatorcontrib><creatorcontrib>Wang, Tinya</creatorcontrib><creatorcontrib>Ryan, Tammy</creatorcontrib><creatorcontrib>Bamm, Vladimir</creatorcontrib><creatorcontrib>Ryan, Scott D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stykel, Morgan G.</au><au>Humphries, Kayla</au><au>Kirby, Mathew P.</au><au>Czaniecki, Chris</au><au>Wang, Tinya</au><au>Ryan, Tammy</au><au>Bamm, Vladimir</au><au>Ryan, Scott D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2018-10</date><risdate>2018</risdate><volume>32</volume><issue>10</issue><spage>5350</spage><epage>5364</epage><pages>5350-5364</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient‐derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α‐synuclein (a‐syn) gene (SNCA‐A53T) against isogenic, mutation‐corrected controls, we describe a novel mechanism whereby NO, generated from SNCA‐A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α‐tubulin (α‐Tub). Nitration of α‐Tub inhibited the association of both α‐syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α‐Tub in the C‐terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω‐nitro‐L‐arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA‐ A53T mutation.—Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J. 32, 5350–5364 (2018). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>29688812</pmid><doi>10.1096/fj.201700759RR</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2018-10, Vol.32 (10), p.5350-5364
issn 0892-6638
1530-6860
language eng
recordid cdi_proquest_miscellaneous_2030917209
source Wiley-Blackwell Read & Publish Collection
subjects alpha-Synuclein - genetics
alpha-Synuclein - metabolism
Amino Acid Substitution
anterograde transport
Axonal Transport
Axons - metabolism
Axons - pathology
Cell Line
Humans
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
isogenic hiPSCs
Microtubules - genetics
Microtubules - metabolism
Microtubules - pathology
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Models, Biological
Mutation, Missense
neurodegeneration
Nitric Oxide - genetics
Nitric Oxide - metabolism
Parkinson Disease - genetics
Parkinson Disease - metabolism
Protein Transport - genetics
reactive nitrogen species
Tubulin - genetics
Tubulin - metabolism
tubulin nitration
title Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitration%20of%20microtubules%20blocks%20axonal%20mitochondrial%20transport%20in%20a%20human%20pluripotent%20stem%20cell%20model%20of%20Parkinson's%20disease&rft.jtitle=The%20FASEB%20journal&rft.au=Stykel,%20Morgan%20G.&rft.date=2018-10&rft.volume=32&rft.issue=10&rft.spage=5350&rft.epage=5364&rft.pages=5350-5364&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201700759RR&rft_dat=%3Cproquest_cross%3E2030917209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389R-d73b135b0e9bef3754bc6e09383a17b1fd2aac7d96b70ff5e5390b56345a8c013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2030917209&rft_id=info:pmid/29688812&rfr_iscdi=true