Loading…
V2O5/Graphene Hybrid Supported on Paper Current Collectors for Flexible Ultrahigh-Capacity Electrodes for Lithium-Ion Batteries
An ultrahigh-capacity, flexible electrode made with vanadium pentoxide/graphene (with a specific capacity of 396 mAh/g) supported on paper-based current collectors has been developed. The ultrahigh-capacity graphene-modified vanadium pentoxide is fabricated by incorporating graphene sheets (2 wt %)...
Saved in:
Published in: | ACS applied materials & interfaces 2018-05, Vol.10 (19), p.16490-16499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An ultrahigh-capacity, flexible electrode made with vanadium pentoxide/graphene (with a specific capacity of 396 mAh/g) supported on paper-based current collectors has been developed. The ultrahigh-capacity graphene-modified vanadium pentoxide is fabricated by incorporating graphene sheets (2 wt %) into the vanadium pentoxide nanorods to improve the specific capacity, cycle life, and rate capability. This active material is then incorporated with the paper-based current collectors [carbon nanotube (CNT)–microfiber paper] to provide flexible electrodes. The flexible current collector has been made by depositing single-wall CNTs over wood microfibers through a layer-by-layer self-assembly process. The CNT mass loading of the fabricated current collectors is limited to 10.1 μg/cm2. The developed electrodes can be used to construct the flexible battery cells, providing a high-capacity/energy and rechargeable energy storage unit for flexible electronic devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b02721 |