Loading…
Potency of a Scalable Nanoparticulate Subunit Vaccine
Nanoparticulate vaccines can potentiate immune responses by site-specific drainage to lymph nodes (LNs). This approach may benefit from a nanoparticle engineering method with fine control over size and codelivery of antigen and adjuvant. Here, we applied the flash nanocomplexation (FNC) method to pr...
Saved in:
Published in: | Nano letters 2018-05, Vol.18 (5), p.3007-3016 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoparticulate vaccines can potentiate immune responses by site-specific drainage to lymph nodes (LNs). This approach may benefit from a nanoparticle engineering method with fine control over size and codelivery of antigen and adjuvant. Here, we applied the flash nanocomplexation (FNC) method to prepare nanovaccines via polyelectrolyte complexation of chitosan and heparin to coencapsulate the VP1 protein antigen from enterovirus 71, which causes hand–foot–mouth disease (HFMD), with tumor necrosis factor α (TNF) or CpG as adjuvants. FNC allows for reduction of the nanovaccine size to range from 90 to 130 nm with relatively narrower size distribution and a high payload capacity. These nanovaccines reached both proximal and distal LNs via subcutaneous injection and subsequently exhibited prolonged retention in the LNs. The codelivery induced strong immune activation toward a Th1 response in addition to a potent Th2 response, and conferred effective protection against lethal virus challenge comparable to that of an approved inactivated viral vaccine in mouse models of both passive and active immunization setting. In addition, these nanovaccines also elicited strong IgA titers, which may offer unique advantages for mucosal protection. This study addresses the issues of size control, antigen bioactivity retention, and biomanufacturing to demonstrate the translational potential of a subunit nanovaccine design. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.8b00478 |