Loading…

Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey)

The rapid urban development in Istanbul has lead to an increase in the exposure levels of the urban vulnerability. Due to the steadily increasing population, with improper land-use planning, inappropriate construction techniques and inadequate infrastructure systems, associated with an existing high...

Full description

Saved in:
Bibliographic Details
Published in:Soil dynamics and earthquake engineering (1984) 2009-04, Vol.29 (4), p.699-709
Main Authors: Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tönük, G., Ameri, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid urban development in Istanbul has lead to an increase in the exposure levels of the urban vulnerability. Due to the steadily increasing population, with improper land-use planning, inappropriate construction techniques and inadequate infrastructure systems, associated with an existing high hazard level, Istanbul is one of the most risky cities in the Mediterranean region. Estimations of casualties and losses, expected for given earthquake scenarios, are necessary to develop sustainable rehabilitation programs and for improving preparedness. Deterministic hazard scenarios and time-dependent probabilistic hazard assessment were used as input to a GIS-based loss estimation model, to evaluate the earthquake risk for Istanbul. The deterministic ground shaking scenarios, used for loss estimation in Istanbul, were defined in terms of acceleration and velocity time series for recognized reference earthquakes caused by different rupture models along extended sources. The ground motions were calculated for the whole metropolitan area extending over a grid system of 25×100 km 2. For the case of Istanbul, the representative scenario was selected by comparing the simulated peak values and response spectra with the empirical ground motion models available for the area. Simulated values are within one standard deviation of the empirical regressions. The availability of wide-ranging building inventory data allowed the application of a GIS-based loss estimation model (KoeriLoss-V2) to evaluate different loss scenarios depending on the ground shaking input, as well as to consider the implications of mitigation actions. It was found that 30% of the buildings in the metropolitan area may be in need of either strengthening or demolition to achieve an adequate degree of life safety.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2008.07.006