Loading…

Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge

The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive model...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2018-01, Vol.10 (18), p.8650-8666
Main Authors: Lowe, B M, Skylaris, C-K, Green, N G, Shibuta, Y, Sakata, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13
cites cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13
container_end_page 8666
container_issue 18
container_start_page 8650
container_title Nanoscale
container_volume 10
creator Lowe, B M
Skylaris, C-K
Green, N G
Shibuta, Y
Sakata, T
description The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
doi_str_mv 10.1039/c8nr00776d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032439122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032439122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</originalsourceid><addsrcrecordid>eNpd0U1r3DAQBmARGrpJ2kt-QBD0EkI2HWn8IfdWNp-QtlDas5Gl8a4XW3Ik-7DX_PJ6u5s95CRpeHjR8DJ2LuBGABZfjXIBIM8ze8ROJCQwR8zlh8M9S2bsNMY1QFZghh_ZTBY5QJqkJ-z1h2_JjK0O3G6c7hoTeWy6aTA03nFf894P5KZHR0NoDI_kog88UOy9i_SNDyviVNdkhq2uJrhLpHjN4xhqbYh3PvQr3_rlhmtnD2Oz0mFJn9hxrdtIn_fnGft7f_dn8Th__vXwtPj-PDeo1DCvMLfa2jo3KcoCqbYaCFMFFRRJlYlpM4EKdE4FYgpCVhYEKcKsSozSAs_Y5S63D_5lpDiUXRMNta125MdYSkCZYCGknOiXd3Ttx-Cm321VplSRJ1t1tVMm-BgD1WUfmk6HTSmg3DZTLtTP3_-buZ3wxT5yrDqyB_pWBf4D_kaK4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036889742</pqid></control><display><type>article</type><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</creator><creatorcontrib>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</creatorcontrib><description>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00776d</identifier><identifier>PMID: 29700545</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomolecules ; Biosensors ; Chemical engineering ; Computer simulation ; Electric fields ; Electric potential ; Mathematical models ; Molecular chains ; Molecular dynamics ; Morphology ; Prediction models ; Sensors ; Silicon dioxide ; Size effects ; Surface charge ; Texturing</subject><ispartof>Nanoscale, 2018-01, Vol.10 (18), p.8650-8666</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</citedby><cites>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</cites><orcidid>0000-0001-6131-7050 ; 0000-0003-1246-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lowe, B M</creatorcontrib><creatorcontrib>Skylaris, C-K</creatorcontrib><creatorcontrib>Green, N G</creatorcontrib><creatorcontrib>Shibuta, Y</creatorcontrib><creatorcontrib>Sakata, T</creatorcontrib><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</description><subject>Biomolecules</subject><subject>Biosensors</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Mathematical models</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Prediction models</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Size effects</subject><subject>Surface charge</subject><subject>Texturing</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1r3DAQBmARGrpJ2kt-QBD0EkI2HWn8IfdWNp-QtlDas5Gl8a4XW3Ik-7DX_PJ6u5s95CRpeHjR8DJ2LuBGABZfjXIBIM8ze8ROJCQwR8zlh8M9S2bsNMY1QFZghh_ZTBY5QJqkJ-z1h2_JjK0O3G6c7hoTeWy6aTA03nFf894P5KZHR0NoDI_kog88UOy9i_SNDyviVNdkhq2uJrhLpHjN4xhqbYh3PvQr3_rlhmtnD2Oz0mFJn9hxrdtIn_fnGft7f_dn8Th__vXwtPj-PDeo1DCvMLfa2jo3KcoCqbYaCFMFFRRJlYlpM4EKdE4FYgpCVhYEKcKsSozSAs_Y5S63D_5lpDiUXRMNta125MdYSkCZYCGknOiXd3Ttx-Cm321VplSRJ1t1tVMm-BgD1WUfmk6HTSmg3DZTLtTP3_-buZ3wxT5yrDqyB_pWBf4D_kaK4w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lowe, B M</creator><creator>Skylaris, C-K</creator><creator>Green, N G</creator><creator>Shibuta, Y</creator><creator>Sakata, T</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6131-7050</orcidid><orcidid>https://orcid.org/0000-0003-1246-5000</orcidid></search><sort><creationdate>20180101</creationdate><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><author>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomolecules</topic><topic>Biosensors</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Mathematical models</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Prediction models</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Size effects</topic><topic>Surface charge</topic><topic>Texturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lowe, B M</creatorcontrib><creatorcontrib>Skylaris, C-K</creatorcontrib><creatorcontrib>Green, N G</creatorcontrib><creatorcontrib>Shibuta, Y</creatorcontrib><creatorcontrib>Sakata, T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lowe, B M</au><au>Skylaris, C-K</au><au>Green, N G</au><au>Shibuta, Y</au><au>Sakata, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>18</issue><spage>8650</spage><epage>8666</epage><pages>8650-8666</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29700545</pmid><doi>10.1039/c8nr00776d</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6131-7050</orcidid><orcidid>https://orcid.org/0000-0003-1246-5000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-01, Vol.10 (18), p.8650-8666
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2032439122
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Biomolecules
Biosensors
Chemical engineering
Computer simulation
Electric fields
Electric potential
Mathematical models
Molecular chains
Molecular dynamics
Morphology
Prediction models
Sensors
Silicon dioxide
Size effects
Surface charge
Texturing
title Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20potentiometric%20sensor%20response:%20the%20effect%20of%20biomolecules,%20surface%20morphology%20and%20surface%20charge&rft.jtitle=Nanoscale&rft.au=Lowe,%20B%20M&rft.date=2018-01-01&rft.volume=10&rft.issue=18&rft.spage=8650&rft.epage=8666&rft.pages=8650-8666&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00776d&rft_dat=%3Cproquest_cross%3E2032439122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036889742&rft_id=info:pmid/29700545&rfr_iscdi=true