Loading…
Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive model...
Saved in:
Published in: | Nanoscale 2018-01, Vol.10 (18), p.8650-8666 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13 |
container_end_page | 8666 |
container_issue | 18 |
container_start_page | 8650 |
container_title | Nanoscale |
container_volume | 10 |
creator | Lowe, B M Skylaris, C-K Green, N G Shibuta, Y Sakata, T |
description | The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled. |
doi_str_mv | 10.1039/c8nr00776d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032439122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032439122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</originalsourceid><addsrcrecordid>eNpd0U1r3DAQBmARGrpJ2kt-QBD0EkI2HWn8IfdWNp-QtlDas5Gl8a4XW3Ik-7DX_PJ6u5s95CRpeHjR8DJ2LuBGABZfjXIBIM8ze8ROJCQwR8zlh8M9S2bsNMY1QFZghh_ZTBY5QJqkJ-z1h2_JjK0O3G6c7hoTeWy6aTA03nFf894P5KZHR0NoDI_kog88UOy9i_SNDyviVNdkhq2uJrhLpHjN4xhqbYh3PvQr3_rlhmtnD2Oz0mFJn9hxrdtIn_fnGft7f_dn8Th__vXwtPj-PDeo1DCvMLfa2jo3KcoCqbYaCFMFFRRJlYlpM4EKdE4FYgpCVhYEKcKsSozSAs_Y5S63D_5lpDiUXRMNta125MdYSkCZYCGknOiXd3Ttx-Cm321VplSRJ1t1tVMm-BgD1WUfmk6HTSmg3DZTLtTP3_-buZ3wxT5yrDqyB_pWBf4D_kaK4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036889742</pqid></control><display><type>article</type><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</creator><creatorcontrib>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</creatorcontrib><description>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00776d</identifier><identifier>PMID: 29700545</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomolecules ; Biosensors ; Chemical engineering ; Computer simulation ; Electric fields ; Electric potential ; Mathematical models ; Molecular chains ; Molecular dynamics ; Morphology ; Prediction models ; Sensors ; Silicon dioxide ; Size effects ; Surface charge ; Texturing</subject><ispartof>Nanoscale, 2018-01, Vol.10 (18), p.8650-8666</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</citedby><cites>FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</cites><orcidid>0000-0001-6131-7050 ; 0000-0003-1246-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lowe, B M</creatorcontrib><creatorcontrib>Skylaris, C-K</creatorcontrib><creatorcontrib>Green, N G</creatorcontrib><creatorcontrib>Shibuta, Y</creatorcontrib><creatorcontrib>Sakata, T</creatorcontrib><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</description><subject>Biomolecules</subject><subject>Biosensors</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Mathematical models</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Prediction models</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Size effects</subject><subject>Surface charge</subject><subject>Texturing</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1r3DAQBmARGrpJ2kt-QBD0EkI2HWn8IfdWNp-QtlDas5Gl8a4XW3Ik-7DX_PJ6u5s95CRpeHjR8DJ2LuBGABZfjXIBIM8ze8ROJCQwR8zlh8M9S2bsNMY1QFZghh_ZTBY5QJqkJ-z1h2_JjK0O3G6c7hoTeWy6aTA03nFf894P5KZHR0NoDI_kog88UOy9i_SNDyviVNdkhq2uJrhLpHjN4xhqbYh3PvQr3_rlhmtnD2Oz0mFJn9hxrdtIn_fnGft7f_dn8Th__vXwtPj-PDeo1DCvMLfa2jo3KcoCqbYaCFMFFRRJlYlpM4EKdE4FYgpCVhYEKcKsSozSAs_Y5S63D_5lpDiUXRMNta125MdYSkCZYCGknOiXd3Ttx-Cm321VplSRJ1t1tVMm-BgD1WUfmk6HTSmg3DZTLtTP3_-buZ3wxT5yrDqyB_pWBf4D_kaK4w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lowe, B M</creator><creator>Skylaris, C-K</creator><creator>Green, N G</creator><creator>Shibuta, Y</creator><creator>Sakata, T</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6131-7050</orcidid><orcidid>https://orcid.org/0000-0003-1246-5000</orcidid></search><sort><creationdate>20180101</creationdate><title>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</title><author>Lowe, B M ; Skylaris, C-K ; Green, N G ; Shibuta, Y ; Sakata, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomolecules</topic><topic>Biosensors</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Mathematical models</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Prediction models</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Size effects</topic><topic>Surface charge</topic><topic>Texturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lowe, B M</creatorcontrib><creatorcontrib>Skylaris, C-K</creatorcontrib><creatorcontrib>Green, N G</creatorcontrib><creatorcontrib>Shibuta, Y</creatorcontrib><creatorcontrib>Sakata, T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lowe, B M</au><au>Skylaris, C-K</au><au>Green, N G</au><au>Shibuta, Y</au><au>Sakata, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>18</issue><spage>8650</spage><epage>8666</epage><pages>8650-8666</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29700545</pmid><doi>10.1039/c8nr00776d</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6131-7050</orcidid><orcidid>https://orcid.org/0000-0003-1246-5000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-01, Vol.10 (18), p.8650-8666 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2032439122 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Biomolecules Biosensors Chemical engineering Computer simulation Electric fields Electric potential Mathematical models Molecular chains Molecular dynamics Morphology Prediction models Sensors Silicon dioxide Size effects Surface charge Texturing |
title | Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20potentiometric%20sensor%20response:%20the%20effect%20of%20biomolecules,%20surface%20morphology%20and%20surface%20charge&rft.jtitle=Nanoscale&rft.au=Lowe,%20B%20M&rft.date=2018-01-01&rft.volume=10&rft.issue=18&rft.spage=8650&rft.epage=8666&rft.pages=8650-8666&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00776d&rft_dat=%3Cproquest_cross%3E2032439122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b37daddf7c53293efda0e3580b094b613631380a7e9335012bd01e8e36b4c8a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036889742&rft_id=info:pmid/29700545&rfr_iscdi=true |