Loading…
Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia
Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and...
Saved in:
Published in: | Applied microbiology and biotechnology 2018-07, Vol.102 (13), p.5483-5494 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3 |
container_end_page | 5494 |
container_issue | 13 |
container_start_page | 5483 |
container_title | Applied microbiology and biotechnology |
container_volume | 102 |
creator | Zhou, Siya Guan, Shixin Duan, Zuowen Han, Xiao Zhang, Xin Fan, Wenli Li, Haoge Chen, Lijing Ma, Hui Liu, Hangmei Ruan, Yanye Lin, Jingwei |
description | Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in
Ganoderma
species. However, little is known about the FIPs from
G. applanatum
. In this study, two novel FIP genes, termed as
FIP-gap1
and
FIP-gap2
, were cloned from
G. applanatum
, characterized and functionally expressed after codon optimization in
Pichia pastoris
GS115. Results showed that
FIP-gap1
and
FIP-gap2
comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other
Ganoderma
FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC
50
of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC
50
of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in
P. pastoris
, which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications. |
doi_str_mv | 10.1007/s00253-018-9022-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032803544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A542672453</galeid><sourcerecordid>A542672453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</originalsourceid><addsrcrecordid>eNp1kt1qFTEUhQdRbK0-gDcS8EahU_M_mctStBYqij_XISez55gyScYkU3t8Gh_VHE61HFFyEcj-1t5rh9U0Twk-IRh3rzLGVLAWE9X2mNJW3GsOCWe0xZLw-80hJp1oO9Grg-ZRzlcYE6qkfNgc0L7Dohf9YfPzXZzALpNJyE4xuLA-RjYOMbRxLs67HzCgNQRAcDMnyNnFcIxMGNDKRWOLu3Zlg0zOteQhFBRHVL5HFOI1TGhcwtpMyHm_hOjjUMeUmDZoTrGACxmNKXp0bkIcIHmDzDxPJpiyeOQC-uDsV2ceNw9GM2V4cnsfNV_evP589ra9fH9-cXZ62VpBcGmVshL3logVW8lBUBhXVHWKMQkdUCMZlaQbCcdcKU4GySTrR8FGOnCqiAR21LzY9a3mvi2Qi_YuW5iqIYhL1hQzqjATnFf0-V_oVVxSqO62FFEV4-yOql8A2oUxlmTstqk-FZzKjnKxpU7-QdUzgHc2Bhhdfd8TvNwTVKbATVmbJWd98enjPkt2rE0x5wSjnpPzJm00wXqbIL1LkK4J0tsEaVE1z26XW1Yehj-K35GpAN0BuZbCGtLd9v_v-gtzudCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031880343</pqid></control><display><type>article</type><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</creator><creatorcontrib>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</creatorcontrib><description>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in
Ganoderma
species. However, little is known about the FIPs from
G. applanatum
. In this study, two novel FIP genes, termed as
FIP-gap1
and
FIP-gap2
, were cloned from
G. applanatum
, characterized and functionally expressed after codon optimization in
Pichia pastoris
GS115. Results showed that
FIP-gap1
and
FIP-gap2
comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other
Ganoderma
FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC
50
of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC
50
of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in
P. pastoris
, which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9022-5</identifier><identifier>PMID: 29705959</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Ascomycota ; Basidiomycota ; Biocompatibility ; Biological activity ; Biomedical and Life Sciences ; Biotechnological Products and Process Engineering ; Biotechnology ; Cancer ; Cell proliferation ; Cloning ; Codons ; Cytotoxicity ; Erythrocytes ; Feasibility studies ; Fungi ; Ganoderma ; Gene expression ; Genetic aspects ; Homology ; Immunomodulation ; Immunomodulators ; Interleukin 2 ; Life Sciences ; Microbial Genetics and Genomics ; Microbiological research ; Microbiology ; Optimization ; Peptides ; Physiological aspects ; Pichia pastoris ; Proteins ; Sheep ; Splenocytes ; Toxicity ; Yeast ; γ-Interferon</subject><ispartof>Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5483-5494</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</citedby><cites>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2031880343/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2031880343?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74641</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29705959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Siya</creatorcontrib><creatorcontrib>Guan, Shixin</creatorcontrib><creatorcontrib>Duan, Zuowen</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Fan, Wenli</creatorcontrib><creatorcontrib>Li, Haoge</creatorcontrib><creatorcontrib>Chen, Lijing</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Liu, Hangmei</creatorcontrib><creatorcontrib>Ruan, Yanye</creatorcontrib><creatorcontrib>Lin, Jingwei</creatorcontrib><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in
Ganoderma
species. However, little is known about the FIPs from
G. applanatum
. In this study, two novel FIP genes, termed as
FIP-gap1
and
FIP-gap2
, were cloned from
G. applanatum
, characterized and functionally expressed after codon optimization in
Pichia pastoris
GS115. Results showed that
FIP-gap1
and
FIP-gap2
comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other
Ganoderma
FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC
50
of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC
50
of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in
P. pastoris
, which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</description><subject>Amino acids</subject><subject>Ascomycota</subject><subject>Basidiomycota</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell proliferation</subject><subject>Cloning</subject><subject>Codons</subject><subject>Cytotoxicity</subject><subject>Erythrocytes</subject><subject>Feasibility studies</subject><subject>Fungi</subject><subject>Ganoderma</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Homology</subject><subject>Immunomodulation</subject><subject>Immunomodulators</subject><subject>Interleukin 2</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Pichia pastoris</subject><subject>Proteins</subject><subject>Sheep</subject><subject>Splenocytes</subject><subject>Toxicity</subject><subject>Yeast</subject><subject>γ-Interferon</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kt1qFTEUhQdRbK0-gDcS8EahU_M_mctStBYqij_XISez55gyScYkU3t8Gh_VHE61HFFyEcj-1t5rh9U0Twk-IRh3rzLGVLAWE9X2mNJW3GsOCWe0xZLw-80hJp1oO9Grg-ZRzlcYE6qkfNgc0L7Dohf9YfPzXZzALpNJyE4xuLA-RjYOMbRxLs67HzCgNQRAcDMnyNnFcIxMGNDKRWOLu3Zlg0zOteQhFBRHVL5HFOI1TGhcwtpMyHm_hOjjUMeUmDZoTrGACxmNKXp0bkIcIHmDzDxPJpiyeOQC-uDsV2ceNw9GM2V4cnsfNV_evP589ra9fH9-cXZ62VpBcGmVshL3logVW8lBUBhXVHWKMQkdUCMZlaQbCcdcKU4GySTrR8FGOnCqiAR21LzY9a3mvi2Qi_YuW5iqIYhL1hQzqjATnFf0-V_oVVxSqO62FFEV4-yOql8A2oUxlmTstqk-FZzKjnKxpU7-QdUzgHc2Bhhdfd8TvNwTVKbATVmbJWd98enjPkt2rE0x5wSjnpPzJm00wXqbIL1LkK4J0tsEaVE1z26XW1Yehj-K35GpAN0BuZbCGtLd9v_v-gtzudCW</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhou, Siya</creator><creator>Guan, Shixin</creator><creator>Duan, Zuowen</creator><creator>Han, Xiao</creator><creator>Zhang, Xin</creator><creator>Fan, Wenli</creator><creator>Li, Haoge</creator><creator>Chen, Lijing</creator><creator>Ma, Hui</creator><creator>Liu, Hangmei</creator><creator>Ruan, Yanye</creator><creator>Lin, Jingwei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><author>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Ascomycota</topic><topic>Basidiomycota</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell proliferation</topic><topic>Cloning</topic><topic>Codons</topic><topic>Cytotoxicity</topic><topic>Erythrocytes</topic><topic>Feasibility studies</topic><topic>Fungi</topic><topic>Ganoderma</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Homology</topic><topic>Immunomodulation</topic><topic>Immunomodulators</topic><topic>Interleukin 2</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Pichia pastoris</topic><topic>Proteins</topic><topic>Sheep</topic><topic>Splenocytes</topic><topic>Toxicity</topic><topic>Yeast</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Siya</creatorcontrib><creatorcontrib>Guan, Shixin</creatorcontrib><creatorcontrib>Duan, Zuowen</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Fan, Wenli</creatorcontrib><creatorcontrib>Li, Haoge</creatorcontrib><creatorcontrib>Chen, Lijing</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Liu, Hangmei</creatorcontrib><creatorcontrib>Ruan, Yanye</creatorcontrib><creatorcontrib>Lin, Jingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Siya</au><au>Guan, Shixin</au><au>Duan, Zuowen</au><au>Han, Xiao</au><au>Zhang, Xin</au><au>Fan, Wenli</au><au>Li, Haoge</au><au>Chen, Lijing</au><au>Ma, Hui</au><au>Liu, Hangmei</au><au>Ruan, Yanye</au><au>Lin, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>102</volume><issue>13</issue><spage>5483</spage><epage>5494</epage><pages>5483-5494</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in
Ganoderma
species. However, little is known about the FIPs from
G. applanatum
. In this study, two novel FIP genes, termed as
FIP-gap1
and
FIP-gap2
, were cloned from
G. applanatum
, characterized and functionally expressed after codon optimization in
Pichia pastoris
GS115. Results showed that
FIP-gap1
and
FIP-gap2
comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other
Ganoderma
FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC
50
of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC
50
of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in
P. pastoris
, which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29705959</pmid><doi>10.1007/s00253-018-9022-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5483-5494 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2032803544 |
source | ABI/INFORM Global; Springer Nature |
subjects | Amino acids Ascomycota Basidiomycota Biocompatibility Biological activity Biomedical and Life Sciences Biotechnological Products and Process Engineering Biotechnology Cancer Cell proliferation Cloning Codons Cytotoxicity Erythrocytes Feasibility studies Fungi Ganoderma Gene expression Genetic aspects Homology Immunomodulation Immunomodulators Interleukin 2 Life Sciences Microbial Genetics and Genomics Microbiological research Microbiology Optimization Peptides Physiological aspects Pichia pastoris Proteins Sheep Splenocytes Toxicity Yeast γ-Interferon |
title | Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cloning,%20codon-optimized%20gene%20expression,%20and%20bioactivity%20assessment%20of%20two%20novel%20fungal%20immunomodulatory%20proteins%20from%20Ganoderma%20applanatum%20in%20Pichia&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhou,%20Siya&rft.date=2018-07-01&rft.volume=102&rft.issue=13&rft.spage=5483&rft.epage=5494&rft.pages=5483-5494&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9022-5&rft_dat=%3Cgale_proqu%3EA542672453%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2031880343&rft_id=info:pmid/29705959&rft_galeid=A542672453&rfr_iscdi=true |