Loading…

Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia

Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2018-07, Vol.102 (13), p.5483-5494
Main Authors: Zhou, Siya, Guan, Shixin, Duan, Zuowen, Han, Xiao, Zhang, Xin, Fan, Wenli, Li, Haoge, Chen, Lijing, Ma, Hui, Liu, Hangmei, Ruan, Yanye, Lin, Jingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3
cites cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3
container_end_page 5494
container_issue 13
container_start_page 5483
container_title Applied microbiology and biotechnology
container_volume 102
creator Zhou, Siya
Guan, Shixin
Duan, Zuowen
Han, Xiao
Zhang, Xin
Fan, Wenli
Li, Haoge
Chen, Lijing
Ma, Hui
Liu, Hangmei
Ruan, Yanye
Lin, Jingwei
description Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and functionally expressed after codon optimization in Pichia pastoris GS115. Results showed that FIP-gap1 and FIP-gap2 comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other Ganoderma FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC 50 of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC 50 of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in P. pastoris , which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.
doi_str_mv 10.1007/s00253-018-9022-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032803544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A542672453</galeid><sourcerecordid>A542672453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</originalsourceid><addsrcrecordid>eNp1kt1qFTEUhQdRbK0-gDcS8EahU_M_mctStBYqij_XISez55gyScYkU3t8Gh_VHE61HFFyEcj-1t5rh9U0Twk-IRh3rzLGVLAWE9X2mNJW3GsOCWe0xZLw-80hJp1oO9Grg-ZRzlcYE6qkfNgc0L7Dohf9YfPzXZzALpNJyE4xuLA-RjYOMbRxLs67HzCgNQRAcDMnyNnFcIxMGNDKRWOLu3Zlg0zOteQhFBRHVL5HFOI1TGhcwtpMyHm_hOjjUMeUmDZoTrGACxmNKXp0bkIcIHmDzDxPJpiyeOQC-uDsV2ceNw9GM2V4cnsfNV_evP589ra9fH9-cXZ62VpBcGmVshL3logVW8lBUBhXVHWKMQkdUCMZlaQbCcdcKU4GySTrR8FGOnCqiAR21LzY9a3mvi2Qi_YuW5iqIYhL1hQzqjATnFf0-V_oVVxSqO62FFEV4-yOql8A2oUxlmTstqk-FZzKjnKxpU7-QdUzgHc2Bhhdfd8TvNwTVKbATVmbJWd98enjPkt2rE0x5wSjnpPzJm00wXqbIL1LkK4J0tsEaVE1z26XW1Yehj-K35GpAN0BuZbCGtLd9v_v-gtzudCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031880343</pqid></control><display><type>article</type><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</creator><creatorcontrib>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</creatorcontrib><description>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and functionally expressed after codon optimization in Pichia pastoris GS115. Results showed that FIP-gap1 and FIP-gap2 comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other Ganoderma FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC 50 of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC 50 of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in P. pastoris , which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9022-5</identifier><identifier>PMID: 29705959</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Ascomycota ; Basidiomycota ; Biocompatibility ; Biological activity ; Biomedical and Life Sciences ; Biotechnological Products and Process Engineering ; Biotechnology ; Cancer ; Cell proliferation ; Cloning ; Codons ; Cytotoxicity ; Erythrocytes ; Feasibility studies ; Fungi ; Ganoderma ; Gene expression ; Genetic aspects ; Homology ; Immunomodulation ; Immunomodulators ; Interleukin 2 ; Life Sciences ; Microbial Genetics and Genomics ; Microbiological research ; Microbiology ; Optimization ; Peptides ; Physiological aspects ; Pichia pastoris ; Proteins ; Sheep ; Splenocytes ; Toxicity ; Yeast ; γ-Interferon</subject><ispartof>Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5483-5494</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</citedby><cites>FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2031880343/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2031880343?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74641</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29705959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Siya</creatorcontrib><creatorcontrib>Guan, Shixin</creatorcontrib><creatorcontrib>Duan, Zuowen</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Fan, Wenli</creatorcontrib><creatorcontrib>Li, Haoge</creatorcontrib><creatorcontrib>Chen, Lijing</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Liu, Hangmei</creatorcontrib><creatorcontrib>Ruan, Yanye</creatorcontrib><creatorcontrib>Lin, Jingwei</creatorcontrib><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and functionally expressed after codon optimization in Pichia pastoris GS115. Results showed that FIP-gap1 and FIP-gap2 comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other Ganoderma FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC 50 of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC 50 of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in P. pastoris , which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</description><subject>Amino acids</subject><subject>Ascomycota</subject><subject>Basidiomycota</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell proliferation</subject><subject>Cloning</subject><subject>Codons</subject><subject>Cytotoxicity</subject><subject>Erythrocytes</subject><subject>Feasibility studies</subject><subject>Fungi</subject><subject>Ganoderma</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Homology</subject><subject>Immunomodulation</subject><subject>Immunomodulators</subject><subject>Interleukin 2</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Pichia pastoris</subject><subject>Proteins</subject><subject>Sheep</subject><subject>Splenocytes</subject><subject>Toxicity</subject><subject>Yeast</subject><subject>γ-Interferon</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kt1qFTEUhQdRbK0-gDcS8EahU_M_mctStBYqij_XISez55gyScYkU3t8Gh_VHE61HFFyEcj-1t5rh9U0Twk-IRh3rzLGVLAWE9X2mNJW3GsOCWe0xZLw-80hJp1oO9Grg-ZRzlcYE6qkfNgc0L7Dohf9YfPzXZzALpNJyE4xuLA-RjYOMbRxLs67HzCgNQRAcDMnyNnFcIxMGNDKRWOLu3Zlg0zOteQhFBRHVL5HFOI1TGhcwtpMyHm_hOjjUMeUmDZoTrGACxmNKXp0bkIcIHmDzDxPJpiyeOQC-uDsV2ceNw9GM2V4cnsfNV_evP589ra9fH9-cXZ62VpBcGmVshL3logVW8lBUBhXVHWKMQkdUCMZlaQbCcdcKU4GySTrR8FGOnCqiAR21LzY9a3mvi2Qi_YuW5iqIYhL1hQzqjATnFf0-V_oVVxSqO62FFEV4-yOql8A2oUxlmTstqk-FZzKjnKxpU7-QdUzgHc2Bhhdfd8TvNwTVKbATVmbJWd98enjPkt2rE0x5wSjnpPzJm00wXqbIL1LkK4J0tsEaVE1z26XW1Yehj-K35GpAN0BuZbCGtLd9v_v-gtzudCW</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhou, Siya</creator><creator>Guan, Shixin</creator><creator>Duan, Zuowen</creator><creator>Han, Xiao</creator><creator>Zhang, Xin</creator><creator>Fan, Wenli</creator><creator>Li, Haoge</creator><creator>Chen, Lijing</creator><creator>Ma, Hui</creator><creator>Liu, Hangmei</creator><creator>Ruan, Yanye</creator><creator>Lin, Jingwei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</title><author>Zhou, Siya ; Guan, Shixin ; Duan, Zuowen ; Han, Xiao ; Zhang, Xin ; Fan, Wenli ; Li, Haoge ; Chen, Lijing ; Ma, Hui ; Liu, Hangmei ; Ruan, Yanye ; Lin, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Ascomycota</topic><topic>Basidiomycota</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell proliferation</topic><topic>Cloning</topic><topic>Codons</topic><topic>Cytotoxicity</topic><topic>Erythrocytes</topic><topic>Feasibility studies</topic><topic>Fungi</topic><topic>Ganoderma</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Homology</topic><topic>Immunomodulation</topic><topic>Immunomodulators</topic><topic>Interleukin 2</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Pichia pastoris</topic><topic>Proteins</topic><topic>Sheep</topic><topic>Splenocytes</topic><topic>Toxicity</topic><topic>Yeast</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Siya</creatorcontrib><creatorcontrib>Guan, Shixin</creatorcontrib><creatorcontrib>Duan, Zuowen</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Fan, Wenli</creatorcontrib><creatorcontrib>Li, Haoge</creatorcontrib><creatorcontrib>Chen, Lijing</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Liu, Hangmei</creatorcontrib><creatorcontrib>Ruan, Yanye</creatorcontrib><creatorcontrib>Lin, Jingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Siya</au><au>Guan, Shixin</au><au>Duan, Zuowen</au><au>Han, Xiao</au><au>Zhang, Xin</au><au>Fan, Wenli</au><au>Li, Haoge</au><au>Chen, Lijing</au><au>Ma, Hui</au><au>Liu, Hangmei</au><au>Ruan, Yanye</au><au>Lin, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>102</volume><issue>13</issue><spage>5483</spage><epage>5494</epage><pages>5483-5494</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum . In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2 , were cloned from G. applanatum , characterized and functionally expressed after codon optimization in Pichia pastoris GS115. Results showed that FIP-gap1 and FIP-gap2 comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other Ganoderma FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC 50 of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 μg/mL, respectively, whereas IC 50 of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 μg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in P. pastoris , which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29705959</pmid><doi>10.1007/s00253-018-9022-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5483-5494
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2032803544
source ABI/INFORM Global; Springer Nature
subjects Amino acids
Ascomycota
Basidiomycota
Biocompatibility
Biological activity
Biomedical and Life Sciences
Biotechnological Products and Process Engineering
Biotechnology
Cancer
Cell proliferation
Cloning
Codons
Cytotoxicity
Erythrocytes
Feasibility studies
Fungi
Ganoderma
Gene expression
Genetic aspects
Homology
Immunomodulation
Immunomodulators
Interleukin 2
Life Sciences
Microbial Genetics and Genomics
Microbiological research
Microbiology
Optimization
Peptides
Physiological aspects
Pichia pastoris
Proteins
Sheep
Splenocytes
Toxicity
Yeast
γ-Interferon
title Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cloning,%20codon-optimized%20gene%20expression,%20and%20bioactivity%20assessment%20of%20two%20novel%20fungal%20immunomodulatory%20proteins%20from%20Ganoderma%20applanatum%20in%20Pichia&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhou,%20Siya&rft.date=2018-07-01&rft.volume=102&rft.issue=13&rft.spage=5483&rft.epage=5494&rft.pages=5483-5494&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9022-5&rft_dat=%3Cgale_proqu%3EA542672453%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-88c609c15b3b6d52efb2878336e7e2a632617f14048841d63639f53f2d42816e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2031880343&rft_id=info:pmid/29705959&rft_galeid=A542672453&rfr_iscdi=true