Loading…

Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

The round-trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry (ϕ-OTDR). Unlike the uniform laser pulse interval in conventional ϕ-OTDR, we randomly modulate the pulse interval so that an equivalent sub-Nyq...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2018-05, Vol.43 (9), p.2022-2025
Main Authors: Zhang, Jingdong, Zheng, Hua, Zhu, Tao, Yin, Guolu, Liu, Min, Bai, Yongzhong, Qu, Dingrong, Qiu, Feng, Huang, Xianbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3
cites cdi_FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3
container_end_page 2025
container_issue 9
container_start_page 2022
container_title Optics letters
container_volume 43
creator Zhang, Jingdong
Zheng, Hua
Zhu, Tao
Yin, Guolu
Liu, Min
Bai, Yongzhong
Qu, Dingrong
Qiu, Feng
Huang, Xianbing
description The round-trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry (ϕ-OTDR). Unlike the uniform laser pulse interval in conventional ϕ-OTDR, we randomly modulate the pulse interval so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For a ϕ-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wideband sparse signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of ϕ-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection.
doi_str_mv 10.1364/OL.43.002022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033376861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033376861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgiq3VnWsJuHHh1JtHM81S6hOK3XTnItzMZCSlM9MmM5X-eyNVFxJIIHz3cDmEXDIYM6Hk3WI-lmIMwIHzIzJkE6EzmWt5TIbApMr0RPMBOYtxBQAqF-KUDLjOmcyFGpL3Bx-74G3fuZJW3rpA4wZDdNmnL53FpqQ7bwN2vm1odE30zQe1exp7m73tt32apliWvvM7R0PibU0j1pt1cufkpMJ1dBc_74gsnx6Xs5dsvnh-nd3Ps0Iw3WXIQVRTDuAsR8ACLNqc5-mWFah0ULAKhVSFcIVEzkrU6QN1oay0VozIzSF2E9pt72Jnah8Lt15j49o-mhQvRK6miiV6_Y-u2j40aTnDGTCtJoxBUrcHVYQ2xuAqswm-xrA3DMx352YxN1KYQ-eJX_2E9rZ25R_-LVl8AfhAfSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101965110</pqid></control><display><type>article</type><title>Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling</title><source>OSA Publishing</source><creator>Zhang, Jingdong ; Zheng, Hua ; Zhu, Tao ; Yin, Guolu ; Liu, Min ; Bai, Yongzhong ; Qu, Dingrong ; Qiu, Feng ; Huang, Xianbing</creator><creatorcontrib>Zhang, Jingdong ; Zheng, Hua ; Zhu, Tao ; Yin, Guolu ; Liu, Min ; Bai, Yongzhong ; Qu, Dingrong ; Qiu, Feng ; Huang, Xianbing</creatorcontrib><description>The round-trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry (ϕ-OTDR). Unlike the uniform laser pulse interval in conventional ϕ-OTDR, we randomly modulate the pulse interval so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For a ϕ-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wideband sparse signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of ϕ-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.43.002022</identifier><identifier>PMID: 29714736</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Broadband ; Computer simulation ; Detection ; Frequency response ; Interrogation ; Monte Carlo simulation ; Random sampling ; Reflectometry ; Signal detection ; Vibration</subject><ispartof>Optics letters, 2018-05, Vol.43 (9), p.2022-2025</ispartof><rights>Copyright Optical Society of America May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3</citedby><cites>FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3</cites><orcidid>0000-0002-8004-4198 ; 0000-0002-5784-5712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29714736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><creatorcontrib>Yin, Guolu</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Bai, Yongzhong</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Huang, Xianbing</creatorcontrib><title>Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>The round-trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry (ϕ-OTDR). Unlike the uniform laser pulse interval in conventional ϕ-OTDR, we randomly modulate the pulse interval so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For a ϕ-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wideband sparse signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of ϕ-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection.</description><subject>Broadband</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Frequency response</subject><subject>Interrogation</subject><subject>Monte Carlo simulation</subject><subject>Random sampling</subject><subject>Reflectometry</subject><subject>Signal detection</subject><subject>Vibration</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgiq3VnWsJuHHh1JtHM81S6hOK3XTnItzMZCSlM9MmM5X-eyNVFxJIIHz3cDmEXDIYM6Hk3WI-lmIMwIHzIzJkE6EzmWt5TIbApMr0RPMBOYtxBQAqF-KUDLjOmcyFGpL3Bx-74G3fuZJW3rpA4wZDdNmnL53FpqQ7bwN2vm1odE30zQe1exp7m73tt32apliWvvM7R0PibU0j1pt1cufkpMJ1dBc_74gsnx6Xs5dsvnh-nd3Ps0Iw3WXIQVRTDuAsR8ACLNqc5-mWFah0ULAKhVSFcIVEzkrU6QN1oay0VozIzSF2E9pt72Jnah8Lt15j49o-mhQvRK6miiV6_Y-u2j40aTnDGTCtJoxBUrcHVYQ2xuAqswm-xrA3DMx352YxN1KYQ-eJX_2E9rZ25R_-LVl8AfhAfSM</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Zhang, Jingdong</creator><creator>Zheng, Hua</creator><creator>Zhu, Tao</creator><creator>Yin, Guolu</creator><creator>Liu, Min</creator><creator>Bai, Yongzhong</creator><creator>Qu, Dingrong</creator><creator>Qiu, Feng</creator><creator>Huang, Xianbing</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8004-4198</orcidid><orcidid>https://orcid.org/0000-0002-5784-5712</orcidid></search><sort><creationdate>20180501</creationdate><title>Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling</title><author>Zhang, Jingdong ; Zheng, Hua ; Zhu, Tao ; Yin, Guolu ; Liu, Min ; Bai, Yongzhong ; Qu, Dingrong ; Qiu, Feng ; Huang, Xianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Broadband</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Frequency response</topic><topic>Interrogation</topic><topic>Monte Carlo simulation</topic><topic>Random sampling</topic><topic>Reflectometry</topic><topic>Signal detection</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><creatorcontrib>Yin, Guolu</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Bai, Yongzhong</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Qiu, Feng</creatorcontrib><creatorcontrib>Huang, Xianbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingdong</au><au>Zheng, Hua</au><au>Zhu, Tao</au><au>Yin, Guolu</au><au>Liu, Min</au><au>Bai, Yongzhong</au><au>Qu, Dingrong</au><au>Qiu, Feng</au><au>Huang, Xianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>43</volume><issue>9</issue><spage>2022</spage><epage>2025</epage><pages>2022-2025</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>The round-trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry (ϕ-OTDR). Unlike the uniform laser pulse interval in conventional ϕ-OTDR, we randomly modulate the pulse interval so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For a ϕ-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wideband sparse signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of ϕ-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29714736</pmid><doi>10.1364/OL.43.002022</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8004-4198</orcidid><orcidid>https://orcid.org/0000-0002-5784-5712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2018-05, Vol.43 (9), p.2022-2025
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2033376861
source OSA Publishing
subjects Broadband
Computer simulation
Detection
Frequency response
Interrogation
Monte Carlo simulation
Random sampling
Reflectometry
Signal detection
Vibration
title Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20fiber%20sparse-wideband%20vibration%20sensing%20by%20sub-Nyquist%20additive%20random%20sampling&rft.jtitle=Optics%20letters&rft.au=Zhang,%20Jingdong&rft.date=2018-05-01&rft.volume=43&rft.issue=9&rft.spage=2022&rft.epage=2025&rft.pages=2022-2025&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.43.002022&rft_dat=%3Cproquest_cross%3E2033376861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a203f8200eb2a0ac0bab727bab4f06060a31fa346c3ec4a21da91faa9c6b4bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101965110&rft_id=info:pmid/29714736&rfr_iscdi=true