Loading…

Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis

Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunct...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2018-08, Vol.37 (31), p.4287-4299
Main Authors: Imamaki, Rie, Ogawa, Kazuko, Kizuka, Yasuhiko, Komi, Yusuke, Kojima, Soichi, Kotani, Norihiro, Honke, Koichi, Honda, Takashi, Taniguchi, Naoyuki, Kitazume, Shinobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33
cites cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33
container_end_page 4299
container_issue 31
container_start_page 4287
container_title Oncogene
container_volume 37
creator Imamaki, Rie
Ogawa, Kazuko
Kizuka, Yasuhiko
Komi, Yusuke
Kojima, Soichi
Kotani, Norihiro
Honke, Koichi
Honda, Takashi
Taniguchi, Naoyuki
Kitazume, Shinobu
description Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 −/− mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 −/− endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 −/− mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.
doi_str_mv 10.1038/s41388-018-0271-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033380935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082079226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhomxsWv1AbwxJN70hhYOzACXzWa7mrSxMeotYWbOrNPMwgozxn2tPkifSTZbNTHxAs4Bvv-H8BPyRvALwaW5zEpIYxgXZYAWTD8jC6F0zarKqudkwW3FmQUJp-Rlzvecc205vCCnYLXQUMOC_FyP-zbm_einIQbaxjClOObSxB2msvkD6d1qeXXLvq7W15-APT5IOoQJN2kItJ9De9Bl6ic6fUOKoYuljoMfaZ5T71ukfUx0mrdl9mEzxA0GzEN-RU56P2Z8_VTPyJfr1efle3bzcf1heXXDWmXExKy1vGtU5U1TeQHQ9YpXWvRlXRvf1d4a0KprsNGy8521FYDQtUElQPFeyjNyfvTdpfh9xjy57ZBbHEcfMM7ZAZdSGm5lVdB3_6D3cU6hvK5QBsrnAdSFEkeqTTHnhL3bpWHr094J7g6xuGMsrsTiDrE4XTRvn5znZovdH8XvHAoARyCXo7DB9Pfq_7v-Aj36mOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082079226</pqid></control><display><type>article</type><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><source>Nexis UK</source><source>Springer Nature</source><creator>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</creator><creatorcontrib>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</creatorcontrib><description>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 −/− mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 −/− endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 −/− mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-018-0271-7</identifier><identifier>PMID: 29717262</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 631/45/221 ; 631/67/2328 ; 64/110 ; 82 ; 82/29 ; 82/51 ; 96 ; 96/63 ; Angiogenesis ; Angiogenesis inhibitors ; Animals ; Anoikis ; Apoptosis ; Apoptosis - physiology ; Cancer ; Cell adhesion &amp; migration ; Cell adhesion molecules ; Cell Adhesion Molecules - metabolism ; Cell Biology ; Cell surface ; Cell survival ; Cells, Cultured ; CHO Cells ; Cricetulus ; Ectopic expression ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Glycoproteins ; Glycosylation ; Human Genetics ; Humans ; Integrin beta3 - metabolism ; Internal Medicine ; Internalization ; Medicine ; Medicine &amp; Public Health ; Mice ; Neovascularization, Pathologic - metabolism ; Neovascularization, Pathologic - pathology ; Oncology ; Sialyltransferases - metabolism ; Signal transduction ; Signal Transduction - physiology ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular endothelial growth factor receptors</subject><ispartof>Oncogene, 2018-08, Vol.37 (31), p.4287-4299</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</citedby><cites>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</cites><orcidid>0000-0002-5252-1612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imamaki, Rie</creatorcontrib><creatorcontrib>Ogawa, Kazuko</creatorcontrib><creatorcontrib>Kizuka, Yasuhiko</creatorcontrib><creatorcontrib>Komi, Yusuke</creatorcontrib><creatorcontrib>Kojima, Soichi</creatorcontrib><creatorcontrib>Kotani, Norihiro</creatorcontrib><creatorcontrib>Honke, Koichi</creatorcontrib><creatorcontrib>Honda, Takashi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Kitazume, Shinobu</creatorcontrib><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 −/− mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 −/− endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 −/− mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</description><subject>13/2</subject><subject>631/45/221</subject><subject>631/67/2328</subject><subject>64/110</subject><subject>82</subject><subject>82/29</subject><subject>82/51</subject><subject>96</subject><subject>96/63</subject><subject>Angiogenesis</subject><subject>Angiogenesis inhibitors</subject><subject>Animals</subject><subject>Anoikis</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Ectopic expression</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Integrin beta3 - metabolism</subject><subject>Internal Medicine</subject><subject>Internalization</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Oncology</subject><subject>Sialyltransferases - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular endothelial growth factor receptors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdFuFCEUhomxsWv1AbwxJN70hhYOzACXzWa7mrSxMeotYWbOrNPMwgozxn2tPkifSTZbNTHxAs4Bvv-H8BPyRvALwaW5zEpIYxgXZYAWTD8jC6F0zarKqudkwW3FmQUJp-Rlzvecc205vCCnYLXQUMOC_FyP-zbm_einIQbaxjClOObSxB2msvkD6d1qeXXLvq7W15-APT5IOoQJN2kItJ9De9Bl6ic6fUOKoYuljoMfaZ5T71ukfUx0mrdl9mEzxA0GzEN-RU56P2Z8_VTPyJfr1efle3bzcf1heXXDWmXExKy1vGtU5U1TeQHQ9YpXWvRlXRvf1d4a0KprsNGy8521FYDQtUElQPFeyjNyfvTdpfh9xjy57ZBbHEcfMM7ZAZdSGm5lVdB3_6D3cU6hvK5QBsrnAdSFEkeqTTHnhL3bpWHr094J7g6xuGMsrsTiDrE4XTRvn5znZovdH8XvHAoARyCXo7DB9Pfq_7v-Aj36mOo</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Imamaki, Rie</creator><creator>Ogawa, Kazuko</creator><creator>Kizuka, Yasuhiko</creator><creator>Komi, Yusuke</creator><creator>Kojima, Soichi</creator><creator>Kotani, Norihiro</creator><creator>Honke, Koichi</creator><creator>Honda, Takashi</creator><creator>Taniguchi, Naoyuki</creator><creator>Kitazume, Shinobu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5252-1612</orcidid></search><sort><creationdate>20180802</creationdate><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><author>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/2</topic><topic>631/45/221</topic><topic>631/67/2328</topic><topic>64/110</topic><topic>82</topic><topic>82/29</topic><topic>82/51</topic><topic>96</topic><topic>96/63</topic><topic>Angiogenesis</topic><topic>Angiogenesis inhibitors</topic><topic>Animals</topic><topic>Anoikis</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Ectopic expression</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Integrin beta3 - metabolism</topic><topic>Internal Medicine</topic><topic>Internalization</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Oncology</topic><topic>Sialyltransferases - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular endothelial growth factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamaki, Rie</creatorcontrib><creatorcontrib>Ogawa, Kazuko</creatorcontrib><creatorcontrib>Kizuka, Yasuhiko</creatorcontrib><creatorcontrib>Komi, Yusuke</creatorcontrib><creatorcontrib>Kojima, Soichi</creatorcontrib><creatorcontrib>Kotani, Norihiro</creatorcontrib><creatorcontrib>Honke, Koichi</creatorcontrib><creatorcontrib>Honda, Takashi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Kitazume, Shinobu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamaki, Rie</au><au>Ogawa, Kazuko</au><au>Kizuka, Yasuhiko</au><au>Komi, Yusuke</au><au>Kojima, Soichi</au><au>Kotani, Norihiro</au><au>Honke, Koichi</au><au>Honda, Takashi</au><au>Taniguchi, Naoyuki</au><au>Kitazume, Shinobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2018-08-02</date><risdate>2018</risdate><volume>37</volume><issue>31</issue><spage>4287</spage><epage>4299</epage><pages>4287-4299</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 −/− mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 −/− endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 −/− mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29717262</pmid><doi>10.1038/s41388-018-0271-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5252-1612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2018-08, Vol.37 (31), p.4287-4299
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_2033380935
source Nexis UK; Springer Nature
subjects 13/2
631/45/221
631/67/2328
64/110
82
82/29
82/51
96
96/63
Angiogenesis
Angiogenesis inhibitors
Animals
Anoikis
Apoptosis
Apoptosis - physiology
Cancer
Cell adhesion & migration
Cell adhesion molecules
Cell Adhesion Molecules - metabolism
Cell Biology
Cell surface
Cell survival
Cells, Cultured
CHO Cells
Cricetulus
Ectopic expression
Endothelial cells
Endothelial Cells - metabolism
Endothelial Cells - pathology
Glycoproteins
Glycosylation
Human Genetics
Humans
Integrin beta3 - metabolism
Internal Medicine
Internalization
Medicine
Medicine & Public Health
Mice
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - pathology
Oncology
Sialyltransferases - metabolism
Signal transduction
Signal Transduction - physiology
Vascular endothelial growth factor
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Vascular endothelial growth factor receptors
title Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosylation%20controls%20cooperative%20PECAM-VEGFR2-%CE%B23%20integrin%20functions%20at%20the%20endothelial%20surface%20for%20tumor%20angiogenesis&rft.jtitle=Oncogene&rft.au=Imamaki,%20Rie&rft.date=2018-08-02&rft.volume=37&rft.issue=31&rft.spage=4287&rft.epage=4299&rft.pages=4287-4299&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-018-0271-7&rft_dat=%3Cproquest_cross%3E2082079226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082079226&rft_id=info:pmid/29717262&rfr_iscdi=true