Loading…
Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis
Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunct...
Saved in:
Published in: | Oncogene 2018-08, Vol.37 (31), p.4287-4299 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33 |
container_end_page | 4299 |
container_issue | 31 |
container_start_page | 4287 |
container_title | Oncogene |
container_volume | 37 |
creator | Imamaki, Rie Ogawa, Kazuko Kizuka, Yasuhiko Komi, Yusuke Kojima, Soichi Kotani, Norihiro Honke, Koichi Honda, Takashi Taniguchi, Naoyuki Kitazume, Shinobu |
description | Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis.
St6gal1
−/−
mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study,
St6gal1
−/−
endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in
St6gal1
−/−
mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy. |
doi_str_mv | 10.1038/s41388-018-0271-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033380935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082079226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</originalsourceid><addsrcrecordid>eNp1kdFuFCEUhomxsWv1AbwxJN70hhYOzACXzWa7mrSxMeotYWbOrNPMwgozxn2tPkifSTZbNTHxAs4Bvv-H8BPyRvALwaW5zEpIYxgXZYAWTD8jC6F0zarKqudkwW3FmQUJp-Rlzvecc205vCCnYLXQUMOC_FyP-zbm_einIQbaxjClOObSxB2msvkD6d1qeXXLvq7W15-APT5IOoQJN2kItJ9De9Bl6ic6fUOKoYuljoMfaZ5T71ukfUx0mrdl9mEzxA0GzEN-RU56P2Z8_VTPyJfr1efle3bzcf1heXXDWmXExKy1vGtU5U1TeQHQ9YpXWvRlXRvf1d4a0KprsNGy8521FYDQtUElQPFeyjNyfvTdpfh9xjy57ZBbHEcfMM7ZAZdSGm5lVdB3_6D3cU6hvK5QBsrnAdSFEkeqTTHnhL3bpWHr094J7g6xuGMsrsTiDrE4XTRvn5znZovdH8XvHAoARyCXo7DB9Pfq_7v-Aj36mOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082079226</pqid></control><display><type>article</type><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><source>Nexis UK</source><source>Springer Nature</source><creator>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</creator><creatorcontrib>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</creatorcontrib><description>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis.
St6gal1
−/−
mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study,
St6gal1
−/−
endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in
St6gal1
−/−
mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-018-0271-7</identifier><identifier>PMID: 29717262</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 631/45/221 ; 631/67/2328 ; 64/110 ; 82 ; 82/29 ; 82/51 ; 96 ; 96/63 ; Angiogenesis ; Angiogenesis inhibitors ; Animals ; Anoikis ; Apoptosis ; Apoptosis - physiology ; Cancer ; Cell adhesion & migration ; Cell adhesion molecules ; Cell Adhesion Molecules - metabolism ; Cell Biology ; Cell surface ; Cell survival ; Cells, Cultured ; CHO Cells ; Cricetulus ; Ectopic expression ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Glycoproteins ; Glycosylation ; Human Genetics ; Humans ; Integrin beta3 - metabolism ; Internal Medicine ; Internalization ; Medicine ; Medicine & Public Health ; Mice ; Neovascularization, Pathologic - metabolism ; Neovascularization, Pathologic - pathology ; Oncology ; Sialyltransferases - metabolism ; Signal transduction ; Signal Transduction - physiology ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular endothelial growth factor receptors</subject><ispartof>Oncogene, 2018-08, Vol.37 (31), p.4287-4299</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</citedby><cites>FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</cites><orcidid>0000-0002-5252-1612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imamaki, Rie</creatorcontrib><creatorcontrib>Ogawa, Kazuko</creatorcontrib><creatorcontrib>Kizuka, Yasuhiko</creatorcontrib><creatorcontrib>Komi, Yusuke</creatorcontrib><creatorcontrib>Kojima, Soichi</creatorcontrib><creatorcontrib>Kotani, Norihiro</creatorcontrib><creatorcontrib>Honke, Koichi</creatorcontrib><creatorcontrib>Honda, Takashi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Kitazume, Shinobu</creatorcontrib><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis.
St6gal1
−/−
mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study,
St6gal1
−/−
endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in
St6gal1
−/−
mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</description><subject>13/2</subject><subject>631/45/221</subject><subject>631/67/2328</subject><subject>64/110</subject><subject>82</subject><subject>82/29</subject><subject>82/51</subject><subject>96</subject><subject>96/63</subject><subject>Angiogenesis</subject><subject>Angiogenesis inhibitors</subject><subject>Animals</subject><subject>Anoikis</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Cancer</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Ectopic expression</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Integrin beta3 - metabolism</subject><subject>Internal Medicine</subject><subject>Internalization</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Oncology</subject><subject>Sialyltransferases - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular endothelial growth factor receptors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdFuFCEUhomxsWv1AbwxJN70hhYOzACXzWa7mrSxMeotYWbOrNPMwgozxn2tPkifSTZbNTHxAs4Bvv-H8BPyRvALwaW5zEpIYxgXZYAWTD8jC6F0zarKqudkwW3FmQUJp-Rlzvecc205vCCnYLXQUMOC_FyP-zbm_einIQbaxjClOObSxB2msvkD6d1qeXXLvq7W15-APT5IOoQJN2kItJ9De9Bl6ic6fUOKoYuljoMfaZ5T71ukfUx0mrdl9mEzxA0GzEN-RU56P2Z8_VTPyJfr1efle3bzcf1heXXDWmXExKy1vGtU5U1TeQHQ9YpXWvRlXRvf1d4a0KprsNGy8521FYDQtUElQPFeyjNyfvTdpfh9xjy57ZBbHEcfMM7ZAZdSGm5lVdB3_6D3cU6hvK5QBsrnAdSFEkeqTTHnhL3bpWHr094J7g6xuGMsrsTiDrE4XTRvn5znZovdH8XvHAoARyCXo7DB9Pfq_7v-Aj36mOo</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Imamaki, Rie</creator><creator>Ogawa, Kazuko</creator><creator>Kizuka, Yasuhiko</creator><creator>Komi, Yusuke</creator><creator>Kojima, Soichi</creator><creator>Kotani, Norihiro</creator><creator>Honke, Koichi</creator><creator>Honda, Takashi</creator><creator>Taniguchi, Naoyuki</creator><creator>Kitazume, Shinobu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5252-1612</orcidid></search><sort><creationdate>20180802</creationdate><title>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</title><author>Imamaki, Rie ; Ogawa, Kazuko ; Kizuka, Yasuhiko ; Komi, Yusuke ; Kojima, Soichi ; Kotani, Norihiro ; Honke, Koichi ; Honda, Takashi ; Taniguchi, Naoyuki ; Kitazume, Shinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/2</topic><topic>631/45/221</topic><topic>631/67/2328</topic><topic>64/110</topic><topic>82</topic><topic>82/29</topic><topic>82/51</topic><topic>96</topic><topic>96/63</topic><topic>Angiogenesis</topic><topic>Angiogenesis inhibitors</topic><topic>Animals</topic><topic>Anoikis</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Cancer</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Ectopic expression</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Integrin beta3 - metabolism</topic><topic>Internal Medicine</topic><topic>Internalization</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Oncology</topic><topic>Sialyltransferases - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular endothelial growth factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamaki, Rie</creatorcontrib><creatorcontrib>Ogawa, Kazuko</creatorcontrib><creatorcontrib>Kizuka, Yasuhiko</creatorcontrib><creatorcontrib>Komi, Yusuke</creatorcontrib><creatorcontrib>Kojima, Soichi</creatorcontrib><creatorcontrib>Kotani, Norihiro</creatorcontrib><creatorcontrib>Honke, Koichi</creatorcontrib><creatorcontrib>Honda, Takashi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Kitazume, Shinobu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamaki, Rie</au><au>Ogawa, Kazuko</au><au>Kizuka, Yasuhiko</au><au>Komi, Yusuke</au><au>Kojima, Soichi</au><au>Kotani, Norihiro</au><au>Honke, Koichi</au><au>Honda, Takashi</au><au>Taniguchi, Naoyuki</au><au>Kitazume, Shinobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2018-08-02</date><risdate>2018</risdate><volume>37</volume><issue>31</issue><spage>4287</spage><epage>4299</epage><pages>4287-4299</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis.
St6gal1
−/−
mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study,
St6gal1
−/−
endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in
St6gal1
−/−
mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29717262</pmid><doi>10.1038/s41388-018-0271-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5252-1612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2018-08, Vol.37 (31), p.4287-4299 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2033380935 |
source | Nexis UK; Springer Nature |
subjects | 13/2 631/45/221 631/67/2328 64/110 82 82/29 82/51 96 96/63 Angiogenesis Angiogenesis inhibitors Animals Anoikis Apoptosis Apoptosis - physiology Cancer Cell adhesion & migration Cell adhesion molecules Cell Adhesion Molecules - metabolism Cell Biology Cell surface Cell survival Cells, Cultured CHO Cells Cricetulus Ectopic expression Endothelial cells Endothelial Cells - metabolism Endothelial Cells - pathology Glycoproteins Glycosylation Human Genetics Humans Integrin beta3 - metabolism Internal Medicine Internalization Medicine Medicine & Public Health Mice Neovascularization, Pathologic - metabolism Neovascularization, Pathologic - pathology Oncology Sialyltransferases - metabolism Signal transduction Signal Transduction - physiology Vascular endothelial growth factor Vascular Endothelial Growth Factor Receptor-2 - metabolism Vascular endothelial growth factor receptors |
title | Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosylation%20controls%20cooperative%20PECAM-VEGFR2-%CE%B23%20integrin%20functions%20at%20the%20endothelial%20surface%20for%20tumor%20angiogenesis&rft.jtitle=Oncogene&rft.au=Imamaki,%20Rie&rft.date=2018-08-02&rft.volume=37&rft.issue=31&rft.spage=4287&rft.epage=4299&rft.pages=4287-4299&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-018-0271-7&rft_dat=%3Cproquest_cross%3E2082079226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-9990db45a8b5a122df40571fa8b68ad6a98274dbeb73dad995221768e41240f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082079226&rft_id=info:pmid/29717262&rfr_iscdi=true |