Loading…

Biodegradable coronary scaffolds: their future and clinical and technological challenges

Abstract Angioplasty and stenting are standard treatment options for both stabile occlusive coronary artery disease and acute myocardial infarctions. Over the last years, several biodegradable stent systems have entered pre-clinical and clinical evaluation and into clinical practice. A strong suppor...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular research 2018-07, Vol.114 (8), p.1063-1072
Main Authors: Hytönen, Jarkko P, Taavitsainen, Jouni, Tarvainen, Santeri, Ylä-Herttuala, Seppo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Angioplasty and stenting are standard treatment options for both stabile occlusive coronary artery disease and acute myocardial infarctions. Over the last years, several biodegradable stent systems have entered pre-clinical and clinical evaluation and into clinical practice. A strong supporting scaffold is necessary after angioplasty to prevent elastic recoil of the vessel but in the long term a permanent metallic stent will only impair normal physiology of the artery wall. Thus, the main advantage of a resorbable system is the potential for better vessel recovery and function in the long term. The new stent systems differ from traditional stents in size and biological responses and questions have risen regarding their mechanical strength and increased risk of stent thrombosis. Here, we present current treatment options with biodegradable scaffolds, discuss further key areas for improvements and review novel technological advances in the context of all up-to-date clinical trial information. New material choices are also covered as well as special considerations for pre-clinical testing.
ISSN:0008-6363
1755-3245
DOI:10.1093/cvr/cvy097