Loading…

Reagents for Astatination of Biomolecules. 2. Conjugation of Anionic Boron Cage Pendant Groups to a Protein Provides a Method for Direct Labeling that is Stable to in Vivo Deastatination

Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of α-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (re...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2007-07, Vol.18 (4), p.1226-1240
Main Authors: Wilbur, D. Scott, Chyan, Ming-Kuan, Hamlin, Donald K, Vessella, Robert L, Wedge, Timothy J, Hawthorne, M. Frederick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of α-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab‘ fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4−7) were prepared and conjugated with an antibody Fab‘ fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab‘−borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab‘. For comparison, direct labeling of the Fab‘ with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab‘ with Na[211At]At and Chloramine-T resulted in a yield of
ISSN:1043-1802
1520-4812
DOI:10.1021/bc060345s