Loading…

Synergism of Rana catesbeiana ribonuclease and IFN-γ triggers distinct death machineries in different human cancer cells

Rana catesbeiana ribonuclease (RC-RNase) possesses tumor-specific cytotoxicity, which can be synergized by IFN-γ. However, it is unclear how RC-RNase and RC-RNase/IFN-γ induce cell death. In this study, we use substrate cleavage assays to systematically investigate RC-RNase- and RC-RNase/IFN-γ-induc...

Full description

Saved in:
Bibliographic Details
Published in:FEBS letters 2005-01, Vol.579 (1), p.265-270
Main Authors: Tang, Chih-Hang Anthony, Hu, Chih-Chi Andrew, Wei, Chyou-Wei, Wang, Jaang-Jiun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rana catesbeiana ribonuclease (RC-RNase) possesses tumor-specific cytotoxicity, which can be synergized by IFN-γ. However, it is unclear how RC-RNase and RC-RNase/IFN-γ induce cell death. In this study, we use substrate cleavage assays to systematically investigate RC-RNase- and RC-RNase/IFN-γ-induced caspase activation in HL-60, MCF-7, and SK-Hep-1 cells. We find that RC-RNase and RC-RNase/IFN-γ induce mitochondria-mediated caspase activation in HL-60 and MCF-7 cells but not in SK-Hep-1 cells, although death of SK-Hep-1 cells is closely related to mitochondrial disruptions. Our findings provide evidence that RC-RNase and RC-RNase/IFN-γ can kill different cancer cells by distinct mechanisms. Compared with onconase, RC-RNase seems to harbor a more specific anti-cancer activity.
ISSN:0014-5793
1873-3468
DOI:10.1016/j.febslet.2004.11.086