Loading…
Effects of agriculture and topography on tropical amphibian species and communities
Habitat loss is the greatest threat to the persistence of forest-dependent amphibians, but it is not the only factor influencing species occurrences. The composition of the surrounding matrix, structure of stream networks, and topography are also important landscape characteristics influencing amphi...
Saved in:
Published in: | Ecological applications 2018-09, Vol.28 (6), p.1554-1564 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Habitat loss is the greatest threat to the persistence of forest-dependent amphibians, but it is not the only factor influencing species occurrences. The composition of the surrounding matrix, structure of stream networks, and topography are also important landscape characteristics influencing amphibian distributions. Tropical forests have high diversity and endemism of amphibians, but little is known about the specific responses of many of these species to landscape features. In this paper, we quantify the response of amphibian species and communities to landscape-scale characteristics in streams within the fragmented Brazilian Atlantic Forest. We surveyed amphibian communities during a rainy season in 50 independent stream segments using Standardized Acoustic and Visual Transect Sampling (active) and Automated Acoustic Recorders (passive) methods. We developed a hierarchical multi-species occupancy model to quantify the influence of landscape-scale characteristics (forest cover, agriculture, catchment area, stream density, and slope) on amphibian occurrence probabilities while accounting for imperfect detection of species using the two survey methods. At the community level, we estimated an overall mean positive relationship between amphibian occurrence probabilities and forest cover, and a negative relationship with agriculture. Catchment area and slope were negatively related with amphibian community structure (95% credible interval [CI] did not overlap zero). The species-level relationships with landscape covariates were highly variable but showed similar patterns to those at the community level. Species detection probabilities varied widely and were influenced by the sampling method. For most species, the active method resulted in higher detection probabilities than the passive approach. Our findings suggest that small streams and flat topography lead to higher amphibian occurrence probabilities for many species in Brazil’s Atlantic Forest. Our results combined with land use and topographic maps can be used to make predictions of amphibian occurrences and distributions beyond our study area. Such projections can be useful to determine where to conduct future research an d prioritize conservation efforts in human-modified landscapes. |
---|---|
ISSN: | 1051-0761 1939-5582 |
DOI: | 10.1002/eap.1741 |