Loading…

Reconstitution of an Ultradian Oscillator in Mammalian Cells by a Synthetic Biology Approach

The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving o...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2018-05, Vol.7 (5), p.1447-1455
Main Authors: Santorelli, Marco, Perna, Daniela, Isomura, Akihiro, Garzilli, Immacolata, Annunziata, Francesco, Postiglione, Lorena, Tumaini, Barbara, Kageyama, Ryoichiro, di Bernardo, Diego
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a “build it to understand it” synthetic biology approach to construct simplified “hybrid” versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.8b00083