Loading…

PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis

Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE −/− mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular medicine (Berlin, Germany) Germany), 2018-06, Vol.96 (6), p.585-600
Main Authors: Lü, Silin, Deng, Jiacheng, Liu, Huiying, Liu, Bo, Yang, Juan, Miao, Yutong, Li, Jing, Wang, Nan, Jiang, Changtao, Xu, Qingbo, Wang, Xian, Feng, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73
cites cdi_FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73
container_end_page 600
container_issue 6
container_start_page 585
container_title Journal of molecular medicine (Berlin, Germany)
container_volume 96
creator Lü, Silin
Deng, Jiacheng
Liu, Huiying
Liu, Bo
Yang, Juan
Miao, Yutong
Li, Jing
Wang, Nan
Jiang, Changtao
Xu, Qingbo
Wang, Xian
Feng, Juan
description Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE −/− mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN - γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE −/− ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE −/− mice. Key messages Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE −/− mice in vivo.
doi_str_mv 10.1007/s00109-018-1645-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2035703336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035703336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoTjv6AG4k4EaQOLlJqlK1lB7_mJFxMa5DkrrpzlA_bVIl9NubskcFYTa5i3w5N4ePkJfA3wHn-iJzDrxlHBoGtapY_YhsQEnBQCn-mGx4q2omNNRn5FnOd4XWVauekjPRaikqDhvy89vVV8E6PODY4TjTAWfrpj56mvCQpl2ywxDHHY0j3V6qt_SWeuz7TGOmPi0-2p6GKdH98YBpPw2TP-YZ44hDtMz6wmKyM3bUzntMU_b9esb8nDwJts_44n6ek-8fP9xuP7Prm09ftu-vmZdazKxxoamgUaJrrXDK6lAr3wEPDqF2qgULQXrHkTtv266RvAnK2SZUsg0etTwnb065pcuPBfNshpjXBnbEaclGcFlpLqWsC_r6P_RuWtJYfvebAt0CQKHgRPnSIycM5pDiYNPRADerFHOSYooUs0oxa_Kr--TFDdj9ffHHQgHECcjlatxh-rf64dRfpsSYnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035179111</pqid></control><display><type>article</type><title>PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis</title><source>Springer Nature</source><creator>Lü, Silin ; Deng, Jiacheng ; Liu, Huiying ; Liu, Bo ; Yang, Juan ; Miao, Yutong ; Li, Jing ; Wang, Nan ; Jiang, Changtao ; Xu, Qingbo ; Wang, Xian ; Feng, Juan</creator><creatorcontrib>Lü, Silin ; Deng, Jiacheng ; Liu, Huiying ; Liu, Bo ; Yang, Juan ; Miao, Yutong ; Li, Jing ; Wang, Nan ; Jiang, Changtao ; Xu, Qingbo ; Wang, Xian ; Feng, Juan</creatorcontrib><description>Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE −/− mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN - γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE −/− ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE −/− mice. Key messages Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE −/− mice in vivo.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-018-1645-6</identifier><identifier>PMID: 29732501</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Apolipoprotein E ; Arteriosclerosis ; Atherosclerosis ; Biomedical and Life Sciences ; Biomedicine ; CD4 antigen ; Cell activation ; Endoplasmic reticulum ; Glycolysis ; Homocysteine ; Human Genetics ; Hyperhomocysteinemia ; Inflammation ; Interferon ; Internal Medicine ; Kinases ; Lymphocytes ; Lymphocytes T ; Metabolism ; Metabolites ; Mice ; Mitochondria ; Molecular Medicine ; Muscles ; Original Article ; Oxidative phosphorylation ; Phosphorylation ; Pyruvate kinase ; Pyruvic acid ; Rapamycin ; Rodents ; Signal transduction ; siRNA ; TOR protein ; Transgenic mice ; γ-Interferon</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2018-06, Vol.96 (6), p.585-600</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Journal of Molecular Medicine is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73</citedby><cites>FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29732501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lü, Silin</creatorcontrib><creatorcontrib>Deng, Jiacheng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Yang, Juan</creatorcontrib><creatorcontrib>Miao, Yutong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Jiang, Changtao</creatorcontrib><creatorcontrib>Xu, Qingbo</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Feng, Juan</creatorcontrib><title>PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE −/− mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN - γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE −/− ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE −/− mice. Key messages Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE −/− mice in vivo.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Apolipoprotein E</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>CD4 antigen</subject><subject>Cell activation</subject><subject>Endoplasmic reticulum</subject><subject>Glycolysis</subject><subject>Homocysteine</subject><subject>Human Genetics</subject><subject>Hyperhomocysteinemia</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Molecular Medicine</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>siRNA</subject><subject>TOR protein</subject><subject>Transgenic mice</subject><subject>γ-Interferon</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc2KFDEUhYMoTjv6AG4k4EaQOLlJqlK1lB7_mJFxMa5DkrrpzlA_bVIl9NubskcFYTa5i3w5N4ePkJfA3wHn-iJzDrxlHBoGtapY_YhsQEnBQCn-mGx4q2omNNRn5FnOd4XWVauekjPRaikqDhvy89vVV8E6PODY4TjTAWfrpj56mvCQpl2ywxDHHY0j3V6qt_SWeuz7TGOmPi0-2p6GKdH98YBpPw2TP-YZ44hDtMz6wmKyM3bUzntMU_b9esb8nDwJts_44n6ek-8fP9xuP7Prm09ftu-vmZdazKxxoamgUaJrrXDK6lAr3wEPDqF2qgULQXrHkTtv266RvAnK2SZUsg0etTwnb065pcuPBfNshpjXBnbEaclGcFlpLqWsC_r6P_RuWtJYfvebAt0CQKHgRPnSIycM5pDiYNPRADerFHOSYooUs0oxa_Kr--TFDdj9ffHHQgHECcjlatxh-rf64dRfpsSYnQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lü, Silin</creator><creator>Deng, Jiacheng</creator><creator>Liu, Huiying</creator><creator>Liu, Bo</creator><creator>Yang, Juan</creator><creator>Miao, Yutong</creator><creator>Li, Jing</creator><creator>Wang, Nan</creator><creator>Jiang, Changtao</creator><creator>Xu, Qingbo</creator><creator>Wang, Xian</creator><creator>Feng, Juan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis</title><author>Lü, Silin ; Deng, Jiacheng ; Liu, Huiying ; Liu, Bo ; Yang, Juan ; Miao, Yutong ; Li, Jing ; Wang, Nan ; Jiang, Changtao ; Xu, Qingbo ; Wang, Xian ; Feng, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Apolipoprotein E</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>CD4 antigen</topic><topic>Cell activation</topic><topic>Endoplasmic reticulum</topic><topic>Glycolysis</topic><topic>Homocysteine</topic><topic>Human Genetics</topic><topic>Hyperhomocysteinemia</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Molecular Medicine</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>siRNA</topic><topic>TOR protein</topic><topic>Transgenic mice</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lü, Silin</creatorcontrib><creatorcontrib>Deng, Jiacheng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Yang, Juan</creatorcontrib><creatorcontrib>Miao, Yutong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Jiang, Changtao</creatorcontrib><creatorcontrib>Xu, Qingbo</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Feng, Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lü, Silin</au><au>Deng, Jiacheng</au><au>Liu, Huiying</au><au>Liu, Bo</au><au>Yang, Juan</au><au>Miao, Yutong</au><au>Li, Jing</au><au>Wang, Nan</au><au>Jiang, Changtao</au><au>Xu, Qingbo</au><au>Wang, Xian</au><au>Feng, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>96</volume><issue>6</issue><spage>585</spage><epage>600</epage><pages>585-600</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE −/− mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN - γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE −/− ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE −/− mice. Key messages Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE −/− mice in vivo.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29732501</pmid><doi>10.1007/s00109-018-1645-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2716
ispartof Journal of molecular medicine (Berlin, Germany), 2018-06, Vol.96 (6), p.585-600
issn 0946-2716
1432-1440
language eng
recordid cdi_proquest_miscellaneous_2035703336
source Springer Nature
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Apolipoprotein E
Arteriosclerosis
Atherosclerosis
Biomedical and Life Sciences
Biomedicine
CD4 antigen
Cell activation
Endoplasmic reticulum
Glycolysis
Homocysteine
Human Genetics
Hyperhomocysteinemia
Inflammation
Interferon
Internal Medicine
Kinases
Lymphocytes
Lymphocytes T
Metabolism
Metabolites
Mice
Mitochondria
Molecular Medicine
Muscles
Original Article
Oxidative phosphorylation
Phosphorylation
Pyruvate kinase
Pyruvic acid
Rapamycin
Rodents
Signal transduction
siRNA
TOR protein
Transgenic mice
γ-Interferon
title PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKM2-dependent%20metabolic%20reprogramming%20in%20CD4+%20T%20cells%20is%20crucial%20for%20hyperhomocysteinemia-accelerated%20atherosclerosis&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=L%C3%BC,%20Silin&rft.date=2018-06-01&rft.volume=96&rft.issue=6&rft.spage=585&rft.epage=600&rft.pages=585-600&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-018-1645-6&rft_dat=%3Cproquest_cross%3E2035703336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8bf851842d9a2b4a7f64cd10fbe16b491a1f3cb0e0bca9d8308f4ba8f539fce73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035179111&rft_id=info:pmid/29732501&rfr_iscdi=true