Loading…
Rock abundance on Mars from the Thermal Emission Spectrometer
Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal ine...
Saved in:
Published in: | Journal of Geophysical Research. E. Planets 2007-05, Vol.112 (E5), p.n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123 |
---|---|
cites | cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123 |
container_end_page | n/a |
container_issue | E5 |
container_start_page | |
container_title | Journal of Geophysical Research. E. Planets |
container_volume | 112 |
creator | Nowicki, S. A. Christensen, P. R. |
description | Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials. |
doi_str_mv | 10.1029/2006JE002798 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20360767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20360767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpxg_IAhOB8zlOnIEBUCmgAhIUwWY57lkE0qbYqYB_j1ErYOKWG-57T-8eY7scDjlgeYQA-dUQAItSbbAecpmniICbrAc8UykgFttsEMILxMlkngHvseO71r4mplrOp2ZuKWnnybXxIXG-nSXdMyWTZ_Iz0yTDWR1CHc_3C7JdvFJHfodtOdMEGqx3nz2cDydnF-n4dnR5djJOjYSsSLkVVlUWpELniIRQpYKSplaiNFnBC0HxBZFJ7iqjsHRTUTnhHK-sVFOOos_2V74L374tKXQ6prHUNGZO7TJoBJFDkRcRPFiB1rcheHJ64euZ8Z-ag_6uSf-tKeJ7a18TrGmcjx3U4VejVFZKAZHDFfdeN_T5r6e-Gt0NEeV3lnQlqkNHHz8i4191TFpI_Xgz0uPHUpY8P9VP4gsAn4MT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20360767</pqid></control><display><type>article</type><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Nowicki, S. A. ; Christensen, P. R.</creator><creatorcontrib>Nowicki, S. A. ; Christensen, P. R.</creatorcontrib><description>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2006JE002798</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Mars ; remote sensing ; surface materials and properties ; thermal properties</subject><ispartof>Journal of Geophysical Research. E. Planets, 2007-05, Vol.112 (E5), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</citedby><cites>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JE002798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JE002798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18849530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowicki, S. A.</creatorcontrib><creatorcontrib>Christensen, P. R.</creatorcontrib><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><title>Journal of Geophysical Research. E. Planets</title><addtitle>J. Geophys. Res</addtitle><description>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Mars</subject><subject>remote sensing</subject><subject>surface materials and properties</subject><subject>thermal properties</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EElXpxg_IAhOB8zlOnIEBUCmgAhIUwWY57lkE0qbYqYB_j1ErYOKWG-57T-8eY7scDjlgeYQA-dUQAItSbbAecpmniICbrAc8UykgFttsEMILxMlkngHvseO71r4mplrOp2ZuKWnnybXxIXG-nSXdMyWTZ_Iz0yTDWR1CHc_3C7JdvFJHfodtOdMEGqx3nz2cDydnF-n4dnR5djJOjYSsSLkVVlUWpELniIRQpYKSplaiNFnBC0HxBZFJ7iqjsHRTUTnhHK-sVFOOos_2V74L374tKXQ6prHUNGZO7TJoBJFDkRcRPFiB1rcheHJ64euZ8Z-ag_6uSf-tKeJ7a18TrGmcjx3U4VejVFZKAZHDFfdeN_T5r6e-Gt0NEeV3lnQlqkNHHz8i4191TFpI_Xgz0uPHUpY8P9VP4gsAn4MT</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Nowicki, S. A.</creator><creator>Christensen, P. R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200705</creationdate><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><author>Nowicki, S. A. ; Christensen, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Mars</topic><topic>remote sensing</topic><topic>surface materials and properties</topic><topic>thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowicki, S. A.</creatorcontrib><creatorcontrib>Christensen, P. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. E. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowicki, S. A.</au><au>Christensen, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rock abundance on Mars from the Thermal Emission Spectrometer</atitle><jtitle>Journal of Geophysical Research. E. Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-05</date><risdate>2007</risdate><volume>112</volume><issue>E5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JE002798</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. E. Planets, 2007-05, Vol.112 (E5), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_20360767 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Earth sciences Earth, ocean, space Exact sciences and technology Mars remote sensing surface materials and properties thermal properties |
title | Rock abundance on Mars from the Thermal Emission Spectrometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rock%20abundance%20on%20Mars%20from%20the%20Thermal%20Emission%20Spectrometer&rft.jtitle=Journal%20of%20Geophysical%20Research.%20E.%20Planets&rft.au=Nowicki,%20S.%20A.&rft.date=2007-05&rft.volume=112&rft.issue=E5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JE002798&rft_dat=%3Cproquest_cross%3E20360767%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20360767&rft_id=info:pmid/&rfr_iscdi=true |