Loading…

Rock abundance on Mars from the Thermal Emission Spectrometer

Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal ine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. E. Planets 2007-05, Vol.112 (E5), p.n/a
Main Authors: Nowicki, S. A., Christensen, P. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123
cites cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123
container_end_page n/a
container_issue E5
container_start_page
container_title Journal of Geophysical Research. E. Planets
container_volume 112
creator Nowicki, S. A.
Christensen, P. R.
description Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.
doi_str_mv 10.1029/2006JE002798
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20360767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20360767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpxg_IAhOB8zlOnIEBUCmgAhIUwWY57lkE0qbYqYB_j1ErYOKWG-57T-8eY7scDjlgeYQA-dUQAItSbbAecpmniICbrAc8UykgFttsEMILxMlkngHvseO71r4mplrOp2ZuKWnnybXxIXG-nSXdMyWTZ_Iz0yTDWR1CHc_3C7JdvFJHfodtOdMEGqx3nz2cDydnF-n4dnR5djJOjYSsSLkVVlUWpELniIRQpYKSplaiNFnBC0HxBZFJ7iqjsHRTUTnhHK-sVFOOos_2V74L374tKXQ6prHUNGZO7TJoBJFDkRcRPFiB1rcheHJ64euZ8Z-ag_6uSf-tKeJ7a18TrGmcjx3U4VejVFZKAZHDFfdeN_T5r6e-Gt0NEeV3lnQlqkNHHz8i4191TFpI_Xgz0uPHUpY8P9VP4gsAn4MT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20360767</pqid></control><display><type>article</type><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Nowicki, S. A. ; Christensen, P. R.</creator><creatorcontrib>Nowicki, S. A. ; Christensen, P. R.</creatorcontrib><description>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2006JE002798</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Mars ; remote sensing ; surface materials and properties ; thermal properties</subject><ispartof>Journal of Geophysical Research. E. Planets, 2007-05, Vol.112 (E5), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</citedby><cites>FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JE002798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JE002798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18849530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowicki, S. A.</creatorcontrib><creatorcontrib>Christensen, P. R.</creatorcontrib><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><title>Journal of Geophysical Research. E. Planets</title><addtitle>J. Geophys. Res</addtitle><description>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Mars</subject><subject>remote sensing</subject><subject>surface materials and properties</subject><subject>thermal properties</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EElXpxg_IAhOB8zlOnIEBUCmgAhIUwWY57lkE0qbYqYB_j1ErYOKWG-57T-8eY7scDjlgeYQA-dUQAItSbbAecpmniICbrAc8UykgFttsEMILxMlkngHvseO71r4mplrOp2ZuKWnnybXxIXG-nSXdMyWTZ_Iz0yTDWR1CHc_3C7JdvFJHfodtOdMEGqx3nz2cDydnF-n4dnR5djJOjYSsSLkVVlUWpELniIRQpYKSplaiNFnBC0HxBZFJ7iqjsHRTUTnhHK-sVFOOos_2V74L374tKXQ6prHUNGZO7TJoBJFDkRcRPFiB1rcheHJ64euZ8Z-ag_6uSf-tKeJ7a18TrGmcjx3U4VejVFZKAZHDFfdeN_T5r6e-Gt0NEeV3lnQlqkNHHz8i4191TFpI_Xgz0uPHUpY8P9VP4gsAn4MT</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Nowicki, S. A.</creator><creator>Christensen, P. R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200705</creationdate><title>Rock abundance on Mars from the Thermal Emission Spectrometer</title><author>Nowicki, S. A. ; Christensen, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Mars</topic><topic>remote sensing</topic><topic>surface materials and properties</topic><topic>thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowicki, S. A.</creatorcontrib><creatorcontrib>Christensen, P. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. E. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowicki, S. A.</au><au>Christensen, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rock abundance on Mars from the Thermal Emission Spectrometer</atitle><jtitle>Journal of Geophysical Research. E. Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-05</date><risdate>2007</risdate><volume>112</volume><issue>E5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Nighttime infrared spectral observations returned from the Mars Global Surveyor Thermal Emission Spectrometer (TES) are well suited for determining the subpixel abundance of rocks on the surface of Mars. The algorithm used here determines both the areal fraction of rocky material and the thermal inertia of the fine‐grained nonrock component present on the surface. Rock is defined as any surface material that has a thermal inertia ≥1250 J m−2 K−1 s−1/2. This can be bedrock, boulders, indurated sediments, or a combination of these on a surface mixed with finer‐grained materials. Over 4.9 million observations were compiled to produce the 8 pixels per degree global rock abundance and fine‐component inertia maps. Total coverage is ∼45% of the planet between latitudes −60 and 60. Less than 1% of the planet has rock abundances greater than 50%, and ∼7% of the mapped surface has greater than 30% rocks. Rocky regions on Mars correspond primarily to the high‐inertia surfaces observed in thermal inertia data sets. The fine‐component inertia data set is used to identify high‐inertia exposures that contain few rocks and more homogeneous materials.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JE002798</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. E. Planets, 2007-05, Vol.112 (E5), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_20360767
source Wiley-Blackwell AGU Digital Archive
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Mars
remote sensing
surface materials and properties
thermal properties
title Rock abundance on Mars from the Thermal Emission Spectrometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rock%20abundance%20on%20Mars%20from%20the%20Thermal%20Emission%20Spectrometer&rft.jtitle=Journal%20of%20Geophysical%20Research.%20E.%20Planets&rft.au=Nowicki,%20S.%20A.&rft.date=2007-05&rft.volume=112&rft.issue=E5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JE002798&rft_dat=%3Cproquest_cross%3E20360767%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5047-1c3c8bc0582ffee3389809edc525a47173e1023451fba829fd3bf3ff1bc58d123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20360767&rft_id=info:pmid/&rfr_iscdi=true