Loading…
Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence
Background Inability to visualize indocyanine green fluorescence images in the surgical field limits the application of current near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node (SLN) biopsy in breast cancer patients. The aim of this study was to ev...
Saved in:
Published in: | Breast cancer (Tokyo, Japan) Japan), 2018-11, Vol.25 (6), p.650-655 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Inability to visualize indocyanine green fluorescence images in the surgical field limits the application of current near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node (SLN) biopsy in breast cancer patients. The aim of this study was to evaluate the usefulness of the Medical Imaging Projection System (MIPS), which uses active projection mapping, for SLN biopsy.
Methods
A total of 56 patients (59 procedures) underwent SLN biopsy using the MIPS between March 2016 and November 2017. After SLN biopsy using the MIPS, residual SLNs were removed using a conventional NIR camera and/or radioisotope method. The primary endpoint of this study was identification rate of SLNs using the MIPS.
Results
In all procedures, at least one SLN was detected by the MIPS, giving an SLN identification rate of 100% [95% confidence interval (CI) 94–100%]. SLN biopsy was successfully performed without operating lights in all procedures. In total, 3 positive SLNs were excised using MIPS, but were not included in the additional SLNs excised by other methods. The median number of SLNs excised using the MIPS was 3 (range 1–7). Of procedures performed after preoperative systemic therapy, the median number of SLNs excised using the MIPS was 3 (range 2–6).
Conclusions
The MIPS is effective in detecting SLNs in patients with breast cancer, providing continuous and accurate projection of fluorescence signals in the surgical field, without need for operating lights, and could be useful in real-time navigation surgery for SLN biopsy. |
---|---|
ISSN: | 1340-6868 1880-4233 |
DOI: | 10.1007/s12282-018-0868-2 |