Loading…

Discovery of Novel Nonsteroidal Anti-Inflammatory Drugs and Carbonic Anhydrase Inhibitors Hybrids (NSAIDs–CAIs) for the Management of Rheumatoid Arthritis

Herein we report the design as well as the synthesis of a new series of dual hybrid compounds consisting of the therapeutically used nonsteroidal-anti-inflammatory drugs (NSAIDs; i.e., indometacin, sulindac, ketoprofen, ibuprofen, diclofenac, ketorolac, etc., cyclooxygenase inhibitors) and the carbo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2018-06, Vol.61 (11), p.4961-4977
Main Authors: Akgul, Ozlem, Di Cesare Mannelli, Lorenzo, Vullo, Daniela, Angeli, Andrea, Ghelardini, Carla, Bartolucci, Gianluca, Alfawaz Altamimi, Abdulmalik Saleh, Scozzafava, Andrea, Supuran, Claudiu T, Carta, Fabrizio
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein we report the design as well as the synthesis of a new series of dual hybrid compounds consisting of the therapeutically used nonsteroidal-anti-inflammatory drugs (NSAIDs; i.e., indometacin, sulindac, ketoprofen, ibuprofen, diclofenac, ketorolac, etc., cyclooxygenase inhibitors) and the carbonic anhydrase inhibitor (CAIs) fragments of the sulfonamide type. Such compounds are proposed as new tools for the management of ache symptoms associated with rheumatoid arthritis (RA) and related inflammation diseases. The majority of the hybrids reported were effective in inhibiting the ubiquitous human (h) CA I and II as well as the RA overexpressed hCAs IX and XII isoforms, with K I values comprised of the low-medium nanomolar ranges. The antihyperalgesic activity of selected compounds was assessed by means of the paw-pressure and incapacitance tests using an in vivo RA model, and among them the hybrids 6B and 8B showed potent antinociceptive effects lasting up to 60 min after administration.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.8b00420