Loading…

Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties

The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2018-08, Vol.39 (22), p.1747-1756
Main Authors: Del Galdo, Sara, Mancini, Giordano, Daidone, Isabella, Zanetti Polzi, Laura, Amadei, Andrea, Barone, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3
cites cdi_FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3
container_end_page 1756
container_issue 22
container_start_page 1747
container_title Journal of computational chemistry
container_volume 39
creator Del Galdo, Sara
Mancini, Giordano
Daidone, Isabella
Zanetti Polzi, Laura
Amadei, Andrea
Barone, Vincenzo
description The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic forms, as well as of aqua‐p‐Cresol (i.e., the moiety that constitutes the side chain portion of Tyrosine). To achieve a better accuracy in the MD sampling, the Tyrosine Force Field (FF) parameters were derived de novo via quantum mechanical calculations. The UV–vis absorption spectra are computed considering the occurring electronic transitions in the vertical approximation for each of the chromophore configurations sampled by the classical MD simulations, thus including the effects of the chromophore semiclassical structural fluctuations. Finally, the explicit treatment of the perturbing effect of the embedding environment permits to fully model the inhomogeneous bandwidth of the electronic spectra. Comparison between our theoretical–computational results and experimental data shows that the used model captures the essential features of the spectroscopic process, thus allowing to perform further analysis on the strict relationship between the quantum properties of the chromophore and the different embedding environments. © 2018 Wiley Periodicals, Inc. Tyrosine UV–vis spectroscopy is an important tool to study protein response to environmental changes. Thus, a deep understanding of the effects of the embedding environment on the Quantum properties of the chromophore is crucial. These effects may be described using Perturbed Matrix Method (PMM). Herein, we theoretically reproduce the absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic conditions by applying the PMM procedure in conjunction with molecular dynamics simulations.
doi_str_mv 10.1002/jcc.25351
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2038705174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2038705174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYjtmg4irKrEUiS1yHEd1SeNgJ0J5e9wLDEhMvn3n2P4BOEdwiiDEs5VSU0wJRQdgjKBgsUj5-yEYQyRwnDKKRuDE-xWEkFCWHIMRFpwyjNIxqBaDs940OpKFt67tjG0i32rVhW1l2-EmupPqo7BBtM52tpFboqsqGB-FabfUkTeljtRSmnBSb4sbozYFrXad0f4UHFWy9vpsP07A28P9InuK56-Pz9ntPFaEEhSXnCtEEEuQxFQwkXCMw3-EIGmpcCFExQrOkGJUJVKVqcSoTKuw1CzlhSrIBFzt-oarP3vtu3xtvNJ1LRtte59jSFIOKeJJoJd_6Mr2rgmvC0rghAlOcFDXO6VCHt7pKm-dWUs35Ajmm_DzEH6-DT_Yi33Hvljr8lf-pB3AbAe-TK2H_zvlL1m2a_kN8kuOdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469732</pqid></control><display><type>article</type><title>Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties</title><source>Wiley</source><creator>Del Galdo, Sara ; Mancini, Giordano ; Daidone, Isabella ; Zanetti Polzi, Laura ; Amadei, Andrea ; Barone, Vincenzo</creator><creatorcontrib>Del Galdo, Sara ; Mancini, Giordano ; Daidone, Isabella ; Zanetti Polzi, Laura ; Amadei, Andrea ; Barone, Vincenzo</creatorcontrib><description>The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic forms, as well as of aqua‐p‐Cresol (i.e., the moiety that constitutes the side chain portion of Tyrosine). To achieve a better accuracy in the MD sampling, the Tyrosine Force Field (FF) parameters were derived de novo via quantum mechanical calculations. The UV–vis absorption spectra are computed considering the occurring electronic transitions in the vertical approximation for each of the chromophore configurations sampled by the classical MD simulations, thus including the effects of the chromophore semiclassical structural fluctuations. Finally, the explicit treatment of the perturbing effect of the embedding environment permits to fully model the inhomogeneous bandwidth of the electronic spectra. Comparison between our theoretical–computational results and experimental data shows that the used model captures the essential features of the spectroscopic process, thus allowing to perform further analysis on the strict relationship between the quantum properties of the chromophore and the different embedding environments. © 2018 Wiley Periodicals, Inc. Tyrosine UV–vis spectroscopy is an important tool to study protein response to environmental changes. Thus, a deep understanding of the effects of the embedding environment on the Quantum properties of the chromophore is crucial. These effects may be described using Perturbed Matrix Method (PMM). Herein, we theoretically reproduce the absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic conditions by applying the PMM procedure in conjunction with molecular dynamics simulations.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25351</identifier><identifier>PMID: 29756218</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Absorption spectroscopy ; Backbone ; Chains ; Chromophores ; Computer simulation ; Electronic spectra ; Embedding ; Environmental effects ; force field refinement ; Molecular dynamics ; Perturbed Matrix Method ; Protonation ; Quantum mechanics ; semiclassical computational spectroscopy ; Spectrum analysis ; Tyrosine ; Variations</subject><ispartof>Journal of computational chemistry, 2018-08, Vol.39 (22), p.1747-1756</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3</citedby><cites>FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3</cites><orcidid>0000-0001-9488-0536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29756218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Galdo, Sara</creatorcontrib><creatorcontrib>Mancini, Giordano</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Zanetti Polzi, Laura</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><creatorcontrib>Barone, Vincenzo</creatorcontrib><title>Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic forms, as well as of aqua‐p‐Cresol (i.e., the moiety that constitutes the side chain portion of Tyrosine). To achieve a better accuracy in the MD sampling, the Tyrosine Force Field (FF) parameters were derived de novo via quantum mechanical calculations. The UV–vis absorption spectra are computed considering the occurring electronic transitions in the vertical approximation for each of the chromophore configurations sampled by the classical MD simulations, thus including the effects of the chromophore semiclassical structural fluctuations. Finally, the explicit treatment of the perturbing effect of the embedding environment permits to fully model the inhomogeneous bandwidth of the electronic spectra. Comparison between our theoretical–computational results and experimental data shows that the used model captures the essential features of the spectroscopic process, thus allowing to perform further analysis on the strict relationship between the quantum properties of the chromophore and the different embedding environments. © 2018 Wiley Periodicals, Inc. Tyrosine UV–vis spectroscopy is an important tool to study protein response to environmental changes. Thus, a deep understanding of the effects of the embedding environment on the Quantum properties of the chromophore is crucial. These effects may be described using Perturbed Matrix Method (PMM). Herein, we theoretically reproduce the absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic conditions by applying the PMM procedure in conjunction with molecular dynamics simulations.</description><subject>Absorption spectra</subject><subject>Absorption spectroscopy</subject><subject>Backbone</subject><subject>Chains</subject><subject>Chromophores</subject><subject>Computer simulation</subject><subject>Electronic spectra</subject><subject>Embedding</subject><subject>Environmental effects</subject><subject>force field refinement</subject><subject>Molecular dynamics</subject><subject>Perturbed Matrix Method</subject><subject>Protonation</subject><subject>Quantum mechanics</subject><subject>semiclassical computational spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tyrosine</subject><subject>Variations</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYjtmg4irKrEUiS1yHEd1SeNgJ0J5e9wLDEhMvn3n2P4BOEdwiiDEs5VSU0wJRQdgjKBgsUj5-yEYQyRwnDKKRuDE-xWEkFCWHIMRFpwyjNIxqBaDs940OpKFt67tjG0i32rVhW1l2-EmupPqo7BBtM52tpFboqsqGB-FabfUkTeljtRSmnBSb4sbozYFrXad0f4UHFWy9vpsP07A28P9InuK56-Pz9ntPFaEEhSXnCtEEEuQxFQwkXCMw3-EIGmpcCFExQrOkGJUJVKVqcSoTKuw1CzlhSrIBFzt-oarP3vtu3xtvNJ1LRtte59jSFIOKeJJoJd_6Mr2rgmvC0rghAlOcFDXO6VCHt7pKm-dWUs35Ajmm_DzEH6-DT_Yi33Hvljr8lf-pB3AbAe-TK2H_zvlL1m2a_kN8kuOdg</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Del Galdo, Sara</creator><creator>Mancini, Giordano</creator><creator>Daidone, Isabella</creator><creator>Zanetti Polzi, Laura</creator><creator>Amadei, Andrea</creator><creator>Barone, Vincenzo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid></search><sort><creationdate>20180815</creationdate><title>Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties</title><author>Del Galdo, Sara ; Mancini, Giordano ; Daidone, Isabella ; Zanetti Polzi, Laura ; Amadei, Andrea ; Barone, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Absorption spectroscopy</topic><topic>Backbone</topic><topic>Chains</topic><topic>Chromophores</topic><topic>Computer simulation</topic><topic>Electronic spectra</topic><topic>Embedding</topic><topic>Environmental effects</topic><topic>force field refinement</topic><topic>Molecular dynamics</topic><topic>Perturbed Matrix Method</topic><topic>Protonation</topic><topic>Quantum mechanics</topic><topic>semiclassical computational spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tyrosine</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Galdo, Sara</creatorcontrib><creatorcontrib>Mancini, Giordano</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Zanetti Polzi, Laura</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><creatorcontrib>Barone, Vincenzo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Galdo, Sara</au><au>Mancini, Giordano</au><au>Daidone, Isabella</au><au>Zanetti Polzi, Laura</au><au>Amadei, Andrea</au><au>Barone, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>39</volume><issue>22</issue><spage>1747</spage><epage>1756</epage><pages>1747-1756</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The UV–vis spectrum of Tyrosine and its response to different backbone protonation states have been studied by applying the Perturbed Matrix Method (PMM) in conjunction with molecular dynamics (MD) simulations. Herein, we theoretically reproduce the UV–vis absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic forms, as well as of aqua‐p‐Cresol (i.e., the moiety that constitutes the side chain portion of Tyrosine). To achieve a better accuracy in the MD sampling, the Tyrosine Force Field (FF) parameters were derived de novo via quantum mechanical calculations. The UV–vis absorption spectra are computed considering the occurring electronic transitions in the vertical approximation for each of the chromophore configurations sampled by the classical MD simulations, thus including the effects of the chromophore semiclassical structural fluctuations. Finally, the explicit treatment of the perturbing effect of the embedding environment permits to fully model the inhomogeneous bandwidth of the electronic spectra. Comparison between our theoretical–computational results and experimental data shows that the used model captures the essential features of the spectroscopic process, thus allowing to perform further analysis on the strict relationship between the quantum properties of the chromophore and the different embedding environments. © 2018 Wiley Periodicals, Inc. Tyrosine UV–vis spectroscopy is an important tool to study protein response to environmental changes. Thus, a deep understanding of the effects of the embedding environment on the Quantum properties of the chromophore is crucial. These effects may be described using Perturbed Matrix Method (PMM). Herein, we theoretically reproduce the absorption spectrum of aqueous solution of Tyrosine in its zwitterionic, anionic and cationic conditions by applying the PMM procedure in conjunction with molecular dynamics simulations.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29756218</pmid><doi>10.1002/jcc.25351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2018-08, Vol.39 (22), p.1747-1756
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2038705174
source Wiley
subjects Absorption spectra
Absorption spectroscopy
Backbone
Chains
Chromophores
Computer simulation
Electronic spectra
Embedding
Environmental effects
force field refinement
Molecular dynamics
Perturbed Matrix Method
Protonation
Quantum mechanics
semiclassical computational spectroscopy
Spectrum analysis
Tyrosine
Variations
title Tyrosine absorption spectroscopy: Backbone protonation effects on the side chain electronic properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tyrosine%20absorption%20spectroscopy:%20Backbone%20protonation%20effects%20on%20the%20side%20chain%20electronic%20properties&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Del%20Galdo,%20Sara&rft.date=2018-08-15&rft.volume=39&rft.issue=22&rft.spage=1747&rft.epage=1756&rft.pages=1747-1756&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25351&rft_dat=%3Cproquest_cross%3E2038705174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3531-d77c131641a2596947220969938dc2b99f6b761c65c4acd8a21d8fc65e687bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092469732&rft_id=info:pmid/29756218&rfr_iscdi=true