Loading…
Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters
A crucial challenge in nanotherapies is achieving accurate and real‐time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmo...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-06, Vol.14 (24), p.e1800868-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43 |
container_end_page | n/a |
container_issue | 24 |
container_start_page | e1800868 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Li, Zhi Lopez‐Ortega, Alberto Aranda‐Ramos, Antonio Tajada, José Luis Sort, Jordi Nogues, Carme Vavassori, Paolo Nogues, Josep Sepulveda, Borja |
description | A crucial challenge in nanotherapies is achieving accurate and real‐time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic‐induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60‐fold smaller than state‐of‐the‐art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real‐time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state‐of‐the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.
Magnetoplasmonic nanodomes (a,b) provide unique control in photothermal therapies by merging local simultaneous plasmonic heating and innovative magnetochromic thermometry. Nanodomes magnetic rotation under weak alternating magnetic induction B (c) generates an intense transmittance τ modulation (d). Analysis of the phase lag Δφ between B and τ (d,e) enables real‐time and accurate quantification of the optically induced temperature variation. |
doi_str_mv | 10.1002/smll.201800868 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039296114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039296114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgitPp1aMUvHjZzJs2TXNU8QvqBzjPJW3fuo6kmUmL7L83YzrBi7kkgd_7kDyEnACdAqXswhutp4xCRmmWZjvkAFKIJ2nG5O72DHREDr1fUBoDS8Q-GTEpUkiZPCCz19YMulcd2sFHua2Uju5R9W33fjGbozPWYO9W0ZXyWEe2i1608sZ2bRU9qvcOe1vNnTXh-qQ6Ow-T6PwR2WuU9nj8vY_J2-3N7Pp-kj_fPVxf5pMqETKbAGIDQghW8xSBi1LRUiFnFSRhNbwsFecNpxJqFInktZR1HTOZ8jirRJnEY3K-yV06-zGg7wvT-gq13nynYDSWgQOs6dkfurCD68LrguIcMs4pD2q6UZWz3jtsiqVrjXKrAmix7rtY911s-w4Dp9-xQ2mw3vKfggOQG_DZalz9E1e8Pub5b_gXDs6Mfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055185505</pqid></control><display><type>article</type><title>Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters</title><source>Wiley</source><creator>Li, Zhi ; Lopez‐Ortega, Alberto ; Aranda‐Ramos, Antonio ; Tajada, José Luis ; Sort, Jordi ; Nogues, Carme ; Vavassori, Paolo ; Nogues, Josep ; Sepulveda, Borja</creator><creatorcontrib>Li, Zhi ; Lopez‐Ortega, Alberto ; Aranda‐Ramos, Antonio ; Tajada, José Luis ; Sort, Jordi ; Nogues, Carme ; Vavassori, Paolo ; Nogues, Josep ; Sepulveda, Borja</creatorcontrib><description>A crucial challenge in nanotherapies is achieving accurate and real‐time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic‐induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60‐fold smaller than state‐of‐the‐art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real‐time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state‐of‐the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.
Magnetoplasmonic nanodomes (a,b) provide unique control in photothermal therapies by merging local simultaneous plasmonic heating and innovative magnetochromic thermometry. Nanodomes magnetic rotation under weak alternating magnetic induction B (c) generates an intense transmittance τ modulation (d). Analysis of the phase lag Δφ between B and τ (d,e) enables real‐time and accurate quantification of the optically induced temperature variation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201800868</identifier><identifier>PMID: 29761629</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cost effectiveness ; Gold ; Heating ; magnetoplasmonics ; Nanofabrication ; nanoheating ; nanomagnetism ; nanoplasmonics ; Nanotechnology ; nanothermometry ; Optical communication ; Phase lag ; photothermal actuation ; Rotation ; Thermometers ; Thermometry ; Viscosity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-06, Vol.14 (24), p.e1800868-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43</citedby><cites>FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43</cites><orcidid>0000-0003-2641-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29761629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Lopez‐Ortega, Alberto</creatorcontrib><creatorcontrib>Aranda‐Ramos, Antonio</creatorcontrib><creatorcontrib>Tajada, José Luis</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Nogues, Carme</creatorcontrib><creatorcontrib>Vavassori, Paolo</creatorcontrib><creatorcontrib>Nogues, Josep</creatorcontrib><creatorcontrib>Sepulveda, Borja</creatorcontrib><title>Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A crucial challenge in nanotherapies is achieving accurate and real‐time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic‐induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60‐fold smaller than state‐of‐the‐art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real‐time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state‐of‐the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.
Magnetoplasmonic nanodomes (a,b) provide unique control in photothermal therapies by merging local simultaneous plasmonic heating and innovative magnetochromic thermometry. Nanodomes magnetic rotation under weak alternating magnetic induction B (c) generates an intense transmittance τ modulation (d). Analysis of the phase lag Δφ between B and τ (d,e) enables real‐time and accurate quantification of the optically induced temperature variation.</description><subject>Cost effectiveness</subject><subject>Gold</subject><subject>Heating</subject><subject>magnetoplasmonics</subject><subject>Nanofabrication</subject><subject>nanoheating</subject><subject>nanomagnetism</subject><subject>nanoplasmonics</subject><subject>Nanotechnology</subject><subject>nanothermometry</subject><subject>Optical communication</subject><subject>Phase lag</subject><subject>photothermal actuation</subject><subject>Rotation</subject><subject>Thermometers</subject><subject>Thermometry</subject><subject>Viscosity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgitPp1aMUvHjZzJs2TXNU8QvqBzjPJW3fuo6kmUmL7L83YzrBi7kkgd_7kDyEnACdAqXswhutp4xCRmmWZjvkAFKIJ2nG5O72DHREDr1fUBoDS8Q-GTEpUkiZPCCz19YMulcd2sFHua2Uju5R9W33fjGbozPWYO9W0ZXyWEe2i1608sZ2bRU9qvcOe1vNnTXh-qQ6Ow-T6PwR2WuU9nj8vY_J2-3N7Pp-kj_fPVxf5pMqETKbAGIDQghW8xSBi1LRUiFnFSRhNbwsFecNpxJqFInktZR1HTOZ8jirRJnEY3K-yV06-zGg7wvT-gq13nynYDSWgQOs6dkfurCD68LrguIcMs4pD2q6UZWz3jtsiqVrjXKrAmix7rtY911s-w4Dp9-xQ2mw3vKfggOQG_DZalz9E1e8Pub5b_gXDs6Mfw</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Li, Zhi</creator><creator>Lopez‐Ortega, Alberto</creator><creator>Aranda‐Ramos, Antonio</creator><creator>Tajada, José Luis</creator><creator>Sort, Jordi</creator><creator>Nogues, Carme</creator><creator>Vavassori, Paolo</creator><creator>Nogues, Josep</creator><creator>Sepulveda, Borja</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2641-0297</orcidid></search><sort><creationdate>201806</creationdate><title>Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters</title><author>Li, Zhi ; Lopez‐Ortega, Alberto ; Aranda‐Ramos, Antonio ; Tajada, José Luis ; Sort, Jordi ; Nogues, Carme ; Vavassori, Paolo ; Nogues, Josep ; Sepulveda, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cost effectiveness</topic><topic>Gold</topic><topic>Heating</topic><topic>magnetoplasmonics</topic><topic>Nanofabrication</topic><topic>nanoheating</topic><topic>nanomagnetism</topic><topic>nanoplasmonics</topic><topic>Nanotechnology</topic><topic>nanothermometry</topic><topic>Optical communication</topic><topic>Phase lag</topic><topic>photothermal actuation</topic><topic>Rotation</topic><topic>Thermometers</topic><topic>Thermometry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Lopez‐Ortega, Alberto</creatorcontrib><creatorcontrib>Aranda‐Ramos, Antonio</creatorcontrib><creatorcontrib>Tajada, José Luis</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><creatorcontrib>Nogues, Carme</creatorcontrib><creatorcontrib>Vavassori, Paolo</creatorcontrib><creatorcontrib>Nogues, Josep</creatorcontrib><creatorcontrib>Sepulveda, Borja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhi</au><au>Lopez‐Ortega, Alberto</au><au>Aranda‐Ramos, Antonio</au><au>Tajada, José Luis</au><au>Sort, Jordi</au><au>Nogues, Carme</au><au>Vavassori, Paolo</au><au>Nogues, Josep</au><au>Sepulveda, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-06</date><risdate>2018</risdate><volume>14</volume><issue>24</issue><spage>e1800868</spage><epage>n/a</epage><pages>e1800868-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A crucial challenge in nanotherapies is achieving accurate and real‐time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic‐induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60‐fold smaller than state‐of‐the‐art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real‐time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state‐of‐the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.
Magnetoplasmonic nanodomes (a,b) provide unique control in photothermal therapies by merging local simultaneous plasmonic heating and innovative magnetochromic thermometry. Nanodomes magnetic rotation under weak alternating magnetic induction B (c) generates an intense transmittance τ modulation (d). Analysis of the phase lag Δφ between B and τ (d,e) enables real‐time and accurate quantification of the optically induced temperature variation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29761629</pmid><doi>10.1002/smll.201800868</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2641-0297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-06, Vol.14 (24), p.e1800868-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2039296114 |
source | Wiley |
subjects | Cost effectiveness Gold Heating magnetoplasmonics Nanofabrication nanoheating nanomagnetism nanoplasmonics Nanotechnology nanothermometry Optical communication Phase lag photothermal actuation Rotation Thermometers Thermometry Viscosity |
title | Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Local%20Heating/Thermometry%20Based%20on%20Plasmonic%20Magnetochromic%20Nanoheaters&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Zhi&rft.date=2018-06&rft.volume=14&rft.issue=24&rft.spage=e1800868&rft.epage=n/a&rft.pages=e1800868-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201800868&rft_dat=%3Cproquest_cross%3E2039296114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4798-1eef17772d56e157ba0bae52c14444f5bba55f5091de7495d99dd3296538c7b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2055185505&rft_id=info:pmid/29761629&rfr_iscdi=true |