Loading…

Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compared among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rocky Mountains of Colorado...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology (1988) 2006-10, Vol.45 (10), p.1450-1464
Main Authors: Yuter, Sandra E., Kingsmill, David E., Nance, Louisa B., Löffler-Mang, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compared among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rocky Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall speed properties. The bimodal distribution of the particles’ joint fall speed–size characteristics at air temperatures from 0.5° to 0°C suggests that wet-snow particles quickly make a transition to rain once melting has progressed sufficiently. As air temperatures increase to 1.5°C, the reduction in the number of very large aggregates with a diameter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting, very large raindrops appear to be the result of aggregrates melting with minimal breakup rather than formation by coalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall speed (120%–230% relative to dry snow) for a given particle size. The average fall speed for observed wet-snow particles with a diameter ≥ 2.4 mm is 2 m s−1with a standard deviation of 0.8 m s−1. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fall speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted 1% of the particles by volume within the isothermal layer at 0°C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0° to 0.5°C. As air temperatures increased above 0.5°C, the relative proportions of rain versus snow particles shift dramatically and raindrops become dominant. The value of 0.5°C for the sharp transition in volume fraction from snow to rain is slightly lower than the range from 1.1° to 1.7°C often used in hydrological models.
ISSN:1558-8424
0894-8763
1558-8432
1520-0450
DOI:10.1175/jam2406.1