Loading…
Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar
Three‐dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both conve...
Saved in:
Published in: | Quarterly journal of the Royal Meteorological Society 2007-07, Vol.133 (627), p.1389-1411 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013 |
---|---|
cites | cdi_FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013 |
container_end_page | 1411 |
container_issue | 627 |
container_start_page | 1389 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 133 |
creator | Houze, Robert A. Wilton, Darren C. Smull, Bradley F. |
description | Three‐dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both convective and stratiform components of the observed radar echoes.
Deep intense convective echoes (40 dBZ echo reaching heights > 10 km) occur primarily just upstream (south) of and over the lower elevations of the Himalayan barrier, especially in the northwestern concave indentation of the barrier. The deep intense convective echoes are vertically erect, consistent with the relatively weak environmental shear. They sometimes extend above 17 km, indicating that exceptionally strong updraughts loft graupel to high altitudes. Occasionally, scattered isolated deep intense convective echoes occur over the Tibetan Plateau.
Wide intense convective echoes (40 dBZ echo > 1000 km2 in horizontal dimension) also occur preferentially just upstream of and over the lower elevations of the Himalayas, most frequently in the northwestern indentation of the barrier. The wide intense echoes have an additional tendency to occur along the central portion of the Himalayas, and they seldom if ever occur over the Tibetan Plateau. The wide intense echoes exhibit three mesoscale structures: amorphous areas, lines parallel to the mountain barrier, and arc‐shaped squall lines perpendicular to and propagating parallel to the steep Himalayan barrier. The latter are rare, generally weaker than those seen in other parts of the world, and occur when a midlevel jet is aligned with the Himalayan escarpment.
Deep and wide intense convective echoes over the northwestern subcontinent tend to occur where the low‐level moist layer of monsoon air from the Arabian Sea meets dry downslope flow, in a manner reminiscent of severe convection leeward of the Rocky Mountains in the central USA. As the low‐level layer of moist air from the sea moves over the hot arid northwestern subcontinent, it is capped by an elevated layer of dry air advected off the Afghan or Tibetan Plateau. The capped low‐level monsoonal airflow accumulates instability via surface heating until this instability is released by orographically induced lifting immediately adjacent to or directly over the foothills of the Himalayas.
Broad (>50 000 km2 in area) stratiform echoes occur in the eastern and central portions of the Himalayan region in c |
doi_str_mv | 10.1002/qj.106 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20408336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20408336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPAb-gFJA4Fp2ma5ogmYKBNQDUkblWauZCpS7ekA_Xf026TduL0Wvbj1x-EXFK4pQDR3XrRaXJEBjQWIkwFfB6TAQDjoQSQp-TM-wUAcBGJAcmmtfV1bQNd2x_UjelCY4PmG4OxWapKtcoGDr_6vPKBR7RB0W7rs2w6Dd4carMyjdp2Zmqu3Dk5KVXl8WKvQ_Lx-DAbjcPJ69Pz6H4SapbGSSjjFApR0JKxOZcRlbGACJFRmmooeMLmEe-WTnWErNAggTPBQKUUUasSKBuS653vytXrDfomXxqvsaqUxXrj8whiSBlLDqB2tfcOy3zluttcm1PI-5fl60WnPXi1d1Req6p0ymrjD7SknEvWT77Zcb-mwvYft_z9pff8Azlidok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20408336</pqid></control><display><type>article</type><title>Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Houze, Robert A. ; Wilton, Darren C. ; Smull, Bradley F.</creator><creatorcontrib>Houze, Robert A. ; Wilton, Darren C. ; Smull, Bradley F.</creatorcontrib><description>Three‐dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both convective and stratiform components of the observed radar echoes.
Deep intense convective echoes (40 dBZ echo reaching heights > 10 km) occur primarily just upstream (south) of and over the lower elevations of the Himalayan barrier, especially in the northwestern concave indentation of the barrier. The deep intense convective echoes are vertically erect, consistent with the relatively weak environmental shear. They sometimes extend above 17 km, indicating that exceptionally strong updraughts loft graupel to high altitudes. Occasionally, scattered isolated deep intense convective echoes occur over the Tibetan Plateau.
Wide intense convective echoes (40 dBZ echo > 1000 km2 in horizontal dimension) also occur preferentially just upstream of and over the lower elevations of the Himalayas, most frequently in the northwestern indentation of the barrier. The wide intense echoes have an additional tendency to occur along the central portion of the Himalayas, and they seldom if ever occur over the Tibetan Plateau. The wide intense echoes exhibit three mesoscale structures: amorphous areas, lines parallel to the mountain barrier, and arc‐shaped squall lines perpendicular to and propagating parallel to the steep Himalayan barrier. The latter are rare, generally weaker than those seen in other parts of the world, and occur when a midlevel jet is aligned with the Himalayan escarpment.
Deep and wide intense convective echoes over the northwestern subcontinent tend to occur where the low‐level moist layer of monsoon air from the Arabian Sea meets dry downslope flow, in a manner reminiscent of severe convection leeward of the Rocky Mountains in the central USA. As the low‐level layer of moist air from the sea moves over the hot arid northwestern subcontinent, it is capped by an elevated layer of dry air advected off the Afghan or Tibetan Plateau. The capped low‐level monsoonal airflow accumulates instability via surface heating until this instability is released by orographically induced lifting immediately adjacent to or directly over the foothills of the Himalayas.
Broad (>50 000 km2 in area) stratiform echoes occur in the eastern and central portions of the Himalayan region in connection with Bay of Bengal depressions. Their centroids are most frequent just upstream of the Himalayas, in the region of the concave indentation of the barrier at the eastern end of the range. The steep topography apparently enhances the formation and longevity of the broad stratiform echoes. Monsoonal depressions provide a moist maritime environment for the convection, evidently allowing mesoscale systems to develop larger stratiform echoes than in the western Himalayan region. Copyright © 2007 Royal Meteorological Society</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.106</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Arabian Sea ; Bay of Bengal ; convective echoes ; deep convection ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; orographic precipitation ; Physics of the high neutral atmosphere</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2007-07, Vol.133 (627), p.1389-1411</ispartof><rights>Copyright © 2007 Royal Meteorological Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013</citedby><cites>FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19155931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Houze, Robert A.</creatorcontrib><creatorcontrib>Wilton, Darren C.</creatorcontrib><creatorcontrib>Smull, Bradley F.</creatorcontrib><title>Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Three‐dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both convective and stratiform components of the observed radar echoes.
Deep intense convective echoes (40 dBZ echo reaching heights > 10 km) occur primarily just upstream (south) of and over the lower elevations of the Himalayan barrier, especially in the northwestern concave indentation of the barrier. The deep intense convective echoes are vertically erect, consistent with the relatively weak environmental shear. They sometimes extend above 17 km, indicating that exceptionally strong updraughts loft graupel to high altitudes. Occasionally, scattered isolated deep intense convective echoes occur over the Tibetan Plateau.
Wide intense convective echoes (40 dBZ echo > 1000 km2 in horizontal dimension) also occur preferentially just upstream of and over the lower elevations of the Himalayas, most frequently in the northwestern indentation of the barrier. The wide intense echoes have an additional tendency to occur along the central portion of the Himalayas, and they seldom if ever occur over the Tibetan Plateau. The wide intense echoes exhibit three mesoscale structures: amorphous areas, lines parallel to the mountain barrier, and arc‐shaped squall lines perpendicular to and propagating parallel to the steep Himalayan barrier. The latter are rare, generally weaker than those seen in other parts of the world, and occur when a midlevel jet is aligned with the Himalayan escarpment.
Deep and wide intense convective echoes over the northwestern subcontinent tend to occur where the low‐level moist layer of monsoon air from the Arabian Sea meets dry downslope flow, in a manner reminiscent of severe convection leeward of the Rocky Mountains in the central USA. As the low‐level layer of moist air from the sea moves over the hot arid northwestern subcontinent, it is capped by an elevated layer of dry air advected off the Afghan or Tibetan Plateau. The capped low‐level monsoonal airflow accumulates instability via surface heating until this instability is released by orographically induced lifting immediately adjacent to or directly over the foothills of the Himalayas.
Broad (>50 000 km2 in area) stratiform echoes occur in the eastern and central portions of the Himalayan region in connection with Bay of Bengal depressions. Their centroids are most frequent just upstream of the Himalayas, in the region of the concave indentation of the barrier at the eastern end of the range. The steep topography apparently enhances the formation and longevity of the broad stratiform echoes. Monsoonal depressions provide a moist maritime environment for the convection, evidently allowing mesoscale systems to develop larger stratiform echoes than in the western Himalayan region. Copyright © 2007 Royal Meteorological Society</description><subject>Arabian Sea</subject><subject>Bay of Bengal</subject><subject>convective echoes</subject><subject>deep convection</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>orographic precipitation</subject><subject>Physics of the high neutral atmosphere</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPAb-gFJA4Fp2ma5ogmYKBNQDUkblWauZCpS7ekA_Xf026TduL0Wvbj1x-EXFK4pQDR3XrRaXJEBjQWIkwFfB6TAQDjoQSQp-TM-wUAcBGJAcmmtfV1bQNd2x_UjelCY4PmG4OxWapKtcoGDr_6vPKBR7RB0W7rs2w6Dd4carMyjdp2Zmqu3Dk5KVXl8WKvQ_Lx-DAbjcPJ69Pz6H4SapbGSSjjFApR0JKxOZcRlbGACJFRmmooeMLmEe-WTnWErNAggTPBQKUUUasSKBuS653vytXrDfomXxqvsaqUxXrj8whiSBlLDqB2tfcOy3zluttcm1PI-5fl60WnPXi1d1Req6p0ymrjD7SknEvWT77Zcb-mwvYft_z9pff8Azlidok</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Houze, Robert A.</creator><creator>Wilton, Darren C.</creator><creator>Smull, Bradley F.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200707</creationdate><title>Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar</title><author>Houze, Robert A. ; Wilton, Darren C. ; Smull, Bradley F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arabian Sea</topic><topic>Bay of Bengal</topic><topic>convective echoes</topic><topic>deep convection</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>orographic precipitation</topic><topic>Physics of the high neutral atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houze, Robert A.</creatorcontrib><creatorcontrib>Wilton, Darren C.</creatorcontrib><creatorcontrib>Smull, Bradley F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houze, Robert A.</au><au>Wilton, Darren C.</au><au>Smull, Bradley F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2007-07</date><risdate>2007</risdate><volume>133</volume><issue>627</issue><spage>1389</spage><epage>1411</epage><pages>1389-1411</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>Three‐dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both convective and stratiform components of the observed radar echoes.
Deep intense convective echoes (40 dBZ echo reaching heights > 10 km) occur primarily just upstream (south) of and over the lower elevations of the Himalayan barrier, especially in the northwestern concave indentation of the barrier. The deep intense convective echoes are vertically erect, consistent with the relatively weak environmental shear. They sometimes extend above 17 km, indicating that exceptionally strong updraughts loft graupel to high altitudes. Occasionally, scattered isolated deep intense convective echoes occur over the Tibetan Plateau.
Wide intense convective echoes (40 dBZ echo > 1000 km2 in horizontal dimension) also occur preferentially just upstream of and over the lower elevations of the Himalayas, most frequently in the northwestern indentation of the barrier. The wide intense echoes have an additional tendency to occur along the central portion of the Himalayas, and they seldom if ever occur over the Tibetan Plateau. The wide intense echoes exhibit three mesoscale structures: amorphous areas, lines parallel to the mountain barrier, and arc‐shaped squall lines perpendicular to and propagating parallel to the steep Himalayan barrier. The latter are rare, generally weaker than those seen in other parts of the world, and occur when a midlevel jet is aligned with the Himalayan escarpment.
Deep and wide intense convective echoes over the northwestern subcontinent tend to occur where the low‐level moist layer of monsoon air from the Arabian Sea meets dry downslope flow, in a manner reminiscent of severe convection leeward of the Rocky Mountains in the central USA. As the low‐level layer of moist air from the sea moves over the hot arid northwestern subcontinent, it is capped by an elevated layer of dry air advected off the Afghan or Tibetan Plateau. The capped low‐level monsoonal airflow accumulates instability via surface heating until this instability is released by orographically induced lifting immediately adjacent to or directly over the foothills of the Himalayas.
Broad (>50 000 km2 in area) stratiform echoes occur in the eastern and central portions of the Himalayan region in connection with Bay of Bengal depressions. Their centroids are most frequent just upstream of the Himalayas, in the region of the concave indentation of the barrier at the eastern end of the range. The steep topography apparently enhances the formation and longevity of the broad stratiform echoes. Monsoonal depressions provide a moist maritime environment for the convection, evidently allowing mesoscale systems to develop larger stratiform echoes than in the western Himalayan region. Copyright © 2007 Royal Meteorological Society</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.106</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2007-07, Vol.133 (627), p.1389-1411 |
issn | 0035-9009 1477-870X |
language | eng |
recordid | cdi_proquest_miscellaneous_20408336 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Arabian Sea Bay of Bengal convective echoes deep convection Earth, ocean, space Exact sciences and technology External geophysics Meteorology orographic precipitation Physics of the high neutral atmosphere |
title | Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monsoon%20convection%20in%20the%20Himalayan%20region%20as%20seen%20by%20the%20TRMM%20Precipitation%20Radar&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Houze,%20Robert%20A.&rft.date=2007-07&rft.volume=133&rft.issue=627&rft.spage=1389&rft.epage=1411&rft.pages=1389-1411&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.106&rft_dat=%3Cproquest_cross%3E20408336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3846-9480b7b1f33d592194702ee3118c0b563d250358c2e3bc09053730a81eecaf013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20408336&rft_id=info:pmid/&rfr_iscdi=true |