Loading…

Similarity solution of oblique impact of wedge-shaped water column on wedged coastal structures

The initial stage of plunging wave impact obliquely on coastal structures is analysed. The problem is modelled through an oblique collision of an asymmetrical water wedge and an asymmetrical solid wedge. The gravity effect on the flow is ignored based on the assumption that the ratio of the incoming...

Full description

Saved in:
Bibliographic Details
Published in:Coastal engineering (Amsterdam) 2009-04, Vol.56 (4), p.400-407
Main Authors: Duan, W.Y., Xu, G.D., Wu, G.X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The initial stage of plunging wave impact obliquely on coastal structures is analysed. The problem is modelled through an oblique collision of an asymmetrical water wedge and an asymmetrical solid wedge. The gravity effect on the flow is ignored based on the assumption that the ratio of the incoming speed of the wave to the acceleration due to gravity is much larger than the time scale of interest. Similarity solution method based on the velocity potential theory is then used. The problem of this similarity flow is solved by a boundary element method through the Cauchy theorem in the complex plan. Results for the wave elevation and pressure distribution are provided, including the forces and moments, effects of different impact angles and the effects of oblique impact are investigated. In particular, negative pressure near the tip of the solid wedge is observed and its implications are discussed.
ISSN:0378-3839
1872-7379
DOI:10.1016/j.coastaleng.2008.09.008