Loading…

State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois

Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic stru...

Full description

Saved in:
Bibliographic Details
Published in:Ecological modelling 2007-10, Vol.207 (2), p.189-196
Main Authors: Wang, Guiming, Getz, Lowell L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093
cites cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093
container_end_page 196
container_issue 2
container_start_page 189
container_title Ecological modelling
container_volume 207
creator Wang, Guiming
Getz, Lowell L.
description Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for Microtus ochrogaster, M. pennsylvanicus, and Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of M. ochrogaster and B. brevicauda displayed greater environmental stochasticity than that of M. pennsylvanicus. The BSSM analysis indicates that M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the M. ochrogaster and B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.
doi_str_mv 10.1016/j.ecolmodel.2007.04.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20411164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380007002608</els_id><sourcerecordid>20411164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EJZaWZ8AXuCWMnTROjlUFpVIlDsDZcidj1SuvHTxOEW9Pyq7aI6cZzXz_jPQJ8V5Bq0ANn_YtYY6HPFNsNYBpoW9BD6_ETo1GN2brX4sddNA33QjwRrxl3gOA0qPeifK9ukoNLw5J_jvC0uciuWZ8cFwDSpdmyeQ4JxeljyvW1dWQE8vs5WOOdCQeCv2WS17WeNqGJLdUbZBSLVv0NsaQcuALceZdZHp3qufi55fPP66_Nnffbm6vr-4a7MxQm0H1ox883PveeY3gwfgOUF_OI-E0bQPyXmvfz9OoaL4H4xx1Cmc1a4Mwdefi4_HuUvKvlbjaQ2CkGF2ivLLV0Culhn4DzRHEkpkLebuUcHDlj1VgnxzbvX12bJ8cW-jt5nVLfji9cIwu-uISBn6JT2Aup3HcuKsjt-mlx0DFMgZKSHMohNXOOfz311-pfJoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20411164</pqid></control><display><type>article</type><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Guiming ; Getz, Lowell L.</creator><creatorcontrib>Wang, Guiming ; Getz, Lowell L.</creatorcontrib><description>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for Microtus ochrogaster, M. pennsylvanicus, and Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of M. ochrogaster and B. brevicauda displayed greater environmental stochasticity than that of M. pennsylvanicus. The BSSM analysis indicates that M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the M. ochrogaster and B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2007.04.026</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Basic structural model ; Biological and medical sciences ; Blarina brevicauda ; Demecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Markov chain Monte Carlo ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microtus ochrogaster ; Population dynamics ; Seasonal fluctuation ; Shrews ; State-space model ; Stochasticity ; Time series analysis ; Voles</subject><ispartof>Ecological modelling, 2007-10, Vol.207 (2), p.189-196</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</citedby><cites>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19075988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guiming</creatorcontrib><creatorcontrib>Getz, Lowell L.</creatorcontrib><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><title>Ecological modelling</title><description>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for Microtus ochrogaster, M. pennsylvanicus, and Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of M. ochrogaster and B. brevicauda displayed greater environmental stochasticity than that of M. pennsylvanicus. The BSSM analysis indicates that M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the M. ochrogaster and B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Basic structural model</subject><subject>Biological and medical sciences</subject><subject>Blarina brevicauda</subject><subject>Demecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Markov chain Monte Carlo</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microtus ochrogaster</subject><subject>Population dynamics</subject><subject>Seasonal fluctuation</subject><subject>Shrews</subject><subject>State-space model</subject><subject>Stochasticity</subject><subject>Time series analysis</subject><subject>Voles</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EJZaWZ8AXuCWMnTROjlUFpVIlDsDZcidj1SuvHTxOEW9Pyq7aI6cZzXz_jPQJ8V5Bq0ANn_YtYY6HPFNsNYBpoW9BD6_ETo1GN2brX4sddNA33QjwRrxl3gOA0qPeifK9ukoNLw5J_jvC0uciuWZ8cFwDSpdmyeQ4JxeljyvW1dWQE8vs5WOOdCQeCv2WS17WeNqGJLdUbZBSLVv0NsaQcuALceZdZHp3qufi55fPP66_Nnffbm6vr-4a7MxQm0H1ox883PveeY3gwfgOUF_OI-E0bQPyXmvfz9OoaL4H4xx1Cmc1a4Mwdefi4_HuUvKvlbjaQ2CkGF2ivLLV0Culhn4DzRHEkpkLebuUcHDlj1VgnxzbvX12bJ8cW-jt5nVLfji9cIwu-uISBn6JT2Aup3HcuKsjt-mlx0DFMgZKSHMohNXOOfz311-pfJoA</recordid><startdate>20071010</startdate><enddate>20071010</enddate><creator>Wang, Guiming</creator><creator>Getz, Lowell L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>20071010</creationdate><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><author>Wang, Guiming ; Getz, Lowell L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Basic structural model</topic><topic>Biological and medical sciences</topic><topic>Blarina brevicauda</topic><topic>Demecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Markov chain Monte Carlo</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microtus ochrogaster</topic><topic>Population dynamics</topic><topic>Seasonal fluctuation</topic><topic>Shrews</topic><topic>State-space model</topic><topic>Stochasticity</topic><topic>Time series analysis</topic><topic>Voles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guiming</creatorcontrib><creatorcontrib>Getz, Lowell L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guiming</au><au>Getz, Lowell L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</atitle><jtitle>Ecological modelling</jtitle><date>2007-10-10</date><risdate>2007</risdate><volume>207</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for Microtus ochrogaster, M. pennsylvanicus, and Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of M. ochrogaster and B. brevicauda displayed greater environmental stochasticity than that of M. pennsylvanicus. The BSSM analysis indicates that M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the M. ochrogaster and B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2007.04.026</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2007-10, Vol.207 (2), p.189-196
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_20411164
source ScienceDirect Freedom Collection
subjects Animal and plant ecology
Animal, plant and microbial ecology
Basic structural model
Biological and medical sciences
Blarina brevicauda
Demecology
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Markov chain Monte Carlo
Methods and techniques (sampling, tagging, trapping, modelling...)
Microtus ochrogaster
Population dynamics
Seasonal fluctuation
Shrews
State-space model
Stochasticity
Time series analysis
Voles
title State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-space%20models%20for%20stochastic%20and%20seasonal%20fluctuations%20of%20vole%20and%20shrew%20populations%20in%20east-central%20Illinois&rft.jtitle=Ecological%20modelling&rft.au=Wang,%20Guiming&rft.date=2007-10-10&rft.volume=207&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2007.04.026&rft_dat=%3Cproquest_cross%3E20411164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20411164&rft_id=info:pmid/&rfr_iscdi=true