Loading…
State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois
Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic stru...
Saved in:
Published in: | Ecological modelling 2007-10, Vol.207 (2), p.189-196 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093 |
container_end_page | 196 |
container_issue | 2 |
container_start_page | 189 |
container_title | Ecological modelling |
container_volume | 207 |
creator | Wang, Guiming Getz, Lowell L. |
description | Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for
Microtus ochrogaster,
M. pennsylvanicus, and
Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the
B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of
M. ochrogaster and
B. brevicauda displayed greater environmental stochasticity than that of
M. pennsylvanicus. The BSSM analysis indicates that
M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the
M. ochrogaster and
B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series. |
doi_str_mv | 10.1016/j.ecolmodel.2007.04.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20411164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380007002608</els_id><sourcerecordid>20411164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EJZaWZ8AXuCWMnTROjlUFpVIlDsDZcidj1SuvHTxOEW9Pyq7aI6cZzXz_jPQJ8V5Bq0ANn_YtYY6HPFNsNYBpoW9BD6_ETo1GN2brX4sddNA33QjwRrxl3gOA0qPeifK9ukoNLw5J_jvC0uciuWZ8cFwDSpdmyeQ4JxeljyvW1dWQE8vs5WOOdCQeCv2WS17WeNqGJLdUbZBSLVv0NsaQcuALceZdZHp3qufi55fPP66_Nnffbm6vr-4a7MxQm0H1ox883PveeY3gwfgOUF_OI-E0bQPyXmvfz9OoaL4H4xx1Cmc1a4Mwdefi4_HuUvKvlbjaQ2CkGF2ivLLV0Culhn4DzRHEkpkLebuUcHDlj1VgnxzbvX12bJ8cW-jt5nVLfji9cIwu-uISBn6JT2Aup3HcuKsjt-mlx0DFMgZKSHMohNXOOfz311-pfJoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20411164</pqid></control><display><type>article</type><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Guiming ; Getz, Lowell L.</creator><creatorcontrib>Wang, Guiming ; Getz, Lowell L.</creatorcontrib><description>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for
Microtus ochrogaster,
M. pennsylvanicus, and
Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the
B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of
M. ochrogaster and
B. brevicauda displayed greater environmental stochasticity than that of
M. pennsylvanicus. The BSSM analysis indicates that
M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the
M. ochrogaster and
B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2007.04.026</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Basic structural model ; Biological and medical sciences ; Blarina brevicauda ; Demecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Markov chain Monte Carlo ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microtus ochrogaster ; Population dynamics ; Seasonal fluctuation ; Shrews ; State-space model ; Stochasticity ; Time series analysis ; Voles</subject><ispartof>Ecological modelling, 2007-10, Vol.207 (2), p.189-196</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</citedby><cites>FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19075988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guiming</creatorcontrib><creatorcontrib>Getz, Lowell L.</creatorcontrib><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><title>Ecological modelling</title><description>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for
Microtus ochrogaster,
M. pennsylvanicus, and
Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the
B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of
M. ochrogaster and
B. brevicauda displayed greater environmental stochasticity than that of
M. pennsylvanicus. The BSSM analysis indicates that
M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the
M. ochrogaster and
B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Basic structural model</subject><subject>Biological and medical sciences</subject><subject>Blarina brevicauda</subject><subject>Demecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Markov chain Monte Carlo</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microtus ochrogaster</subject><subject>Population dynamics</subject><subject>Seasonal fluctuation</subject><subject>Shrews</subject><subject>State-space model</subject><subject>Stochasticity</subject><subject>Time series analysis</subject><subject>Voles</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EJZaWZ8AXuCWMnTROjlUFpVIlDsDZcidj1SuvHTxOEW9Pyq7aI6cZzXz_jPQJ8V5Bq0ANn_YtYY6HPFNsNYBpoW9BD6_ETo1GN2brX4sddNA33QjwRrxl3gOA0qPeifK9ukoNLw5J_jvC0uciuWZ8cFwDSpdmyeQ4JxeljyvW1dWQE8vs5WOOdCQeCv2WS17WeNqGJLdUbZBSLVv0NsaQcuALceZdZHp3qufi55fPP66_Nnffbm6vr-4a7MxQm0H1ox883PveeY3gwfgOUF_OI-E0bQPyXmvfz9OoaL4H4xx1Cmc1a4Mwdefi4_HuUvKvlbjaQ2CkGF2ivLLV0Culhn4DzRHEkpkLebuUcHDlj1VgnxzbvX12bJ8cW-jt5nVLfji9cIwu-uISBn6JT2Aup3HcuKsjt-mlx0DFMgZKSHMohNXOOfz311-pfJoA</recordid><startdate>20071010</startdate><enddate>20071010</enddate><creator>Wang, Guiming</creator><creator>Getz, Lowell L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>20071010</creationdate><title>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</title><author>Wang, Guiming ; Getz, Lowell L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Basic structural model</topic><topic>Biological and medical sciences</topic><topic>Blarina brevicauda</topic><topic>Demecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Markov chain Monte Carlo</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microtus ochrogaster</topic><topic>Population dynamics</topic><topic>Seasonal fluctuation</topic><topic>Shrews</topic><topic>State-space model</topic><topic>Stochasticity</topic><topic>Time series analysis</topic><topic>Voles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guiming</creatorcontrib><creatorcontrib>Getz, Lowell L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guiming</au><au>Getz, Lowell L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois</atitle><jtitle>Ecological modelling</jtitle><date>2007-10-10</date><risdate>2007</risdate><volume>207</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Small mammal populations fluctuate erratically and exhibit seasonal and multi-annual variations in abundance. The decomposition of population dynamics into seasonal fluctuations, stochastic trends, and residuals helps to quantify environmental stochasticity of population dynamics. We used basic structural model (BSM), a state-space time series model, to decompose and de-trend 25 years of monthly live-trapping data for
Microtus ochrogaster,
M. pennsylvanicus, and
Blarina brevicauda in east-central Illinois, USA. We further used Bayesian state-space models (BSSM) to determine the structure of within-year and between-year density dependent feedbacks in the stationarized residuals from the BSM for the three species. The BSM and spectral analysis identified significant seasonal fluctuations for the
B. brevicauda populations. All populations of the three species exhibited strong stochastic fluctuations, but those of
M. ochrogaster and
B. brevicauda displayed greater environmental stochasticity than that of
M. pennsylvanicus. The BSSM analysis indicates that
M. pennsylvanicus was subject to density-dependence with a 4-month time lag, whereas the
M. ochrogaster and
B. brevicauda populations displayed 18- and 10-month delayed density-dependence, respectively. Moreover, spectral analysis suggests that none of the species exhibited multi-annual cyclic population fluctuations. Thus, both environmental stochasticity and density-dependence appeared to play significant roles in the population dynamics. State-space models are a promising tool for analyzing long-term monthly population time series.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2007.04.026</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3800 |
ispartof | Ecological modelling, 2007-10, Vol.207 (2), p.189-196 |
issn | 0304-3800 1872-7026 |
language | eng |
recordid | cdi_proquest_miscellaneous_20411164 |
source | ScienceDirect Freedom Collection |
subjects | Animal and plant ecology Animal, plant and microbial ecology Basic structural model Biological and medical sciences Blarina brevicauda Demecology Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques Markov chain Monte Carlo Methods and techniques (sampling, tagging, trapping, modelling...) Microtus ochrogaster Population dynamics Seasonal fluctuation Shrews State-space model Stochasticity Time series analysis Voles |
title | State-space models for stochastic and seasonal fluctuations of vole and shrew populations in east-central Illinois |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-space%20models%20for%20stochastic%20and%20seasonal%20fluctuations%20of%20vole%20and%20shrew%20populations%20in%20east-central%20Illinois&rft.jtitle=Ecological%20modelling&rft.au=Wang,%20Guiming&rft.date=2007-10-10&rft.volume=207&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2007.04.026&rft_dat=%3Cproquest_cross%3E20411164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-6148f6f0bf4af2c0f07f30c25d8ec99c0feff22f4d981edb07aae31cd1d27c093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20411164&rft_id=info:pmid/&rfr_iscdi=true |