Loading…
Distribution of diameters for Erdős-Rényi random graphs
We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distributi...
Saved in:
Published in: | Physical review. E 2018-03, Vol.97 (3-1), p.032128-032128, Article 032128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3 |
container_end_page | 032128 |
container_issue | 3-1 |
container_start_page | 032128 |
container_title | Physical review. E |
container_volume | 97 |
creator | Hartmann, A K Mézard, M |
description | We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds. |
doi_str_mv | 10.1103/PhysRevE.97.032128 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2041640603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041640603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3</originalsourceid><addsrcrecordid>eNo9kEtKA0EYhBtRjMRcwIXM0s3Ev58zvZQYHxBQgq6bnn6YlsxM7J4RcgyP4TnEexnJY1W1qCqoD6ELDGOMgV4_L9Zp7j6nY1mMgRJMyiN0RlgBOQCnxwfP-ACNUnoHACxAFpicogGRRSGAwRmStyF1MVR9F9oma31mg65d52LKfBuzabS_Xymf_3w365BF3di2zt6iXi3SOTrxepncaKdD9Ho3fZk85LOn-8fJzSw3lJMu15jzQpaGUkmd0NyCx5UrqTDOC1eWlQfOWCWs3FxgmlQGDMNaCMa4xtbRIbra7q5i-9G71Kk6JOOWS924tk-KAMOCgQC6iZJt1MQ2pei8WsVQ67hWGNQ_NbWnpmShttQ2pcvdfl_Vzh4qe0b0D4FtahU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041640603</pqid></control><display><type>article</type><title>Distribution of diameters for Erdős-Rényi random graphs</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Hartmann, A K ; Mézard, M</creator><creatorcontrib>Hartmann, A K ; Mézard, M</creatorcontrib><description>We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.97.032128</identifier><identifier>PMID: 29776040</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2018-03, Vol.97 (3-1), p.032128-032128, Article 032128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3</citedby><cites>FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29776040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartmann, A K</creatorcontrib><creatorcontrib>Mézard, M</creatorcontrib><title>Distribution of diameters for Erdős-Rényi random graphs</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtKA0EYhBtRjMRcwIXM0s3Ev58zvZQYHxBQgq6bnn6YlsxM7J4RcgyP4TnEexnJY1W1qCqoD6ELDGOMgV4_L9Zp7j6nY1mMgRJMyiN0RlgBOQCnxwfP-ACNUnoHACxAFpicogGRRSGAwRmStyF1MVR9F9oma31mg65d52LKfBuzabS_Xymf_3w365BF3di2zt6iXi3SOTrxepncaKdD9Ho3fZk85LOn-8fJzSw3lJMu15jzQpaGUkmd0NyCx5UrqTDOC1eWlQfOWCWs3FxgmlQGDMNaCMa4xtbRIbra7q5i-9G71Kk6JOOWS924tk-KAMOCgQC6iZJt1MQ2pei8WsVQ67hWGNQ_NbWnpmShttQ2pcvdfl_Vzh4qe0b0D4FtahU</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Hartmann, A K</creator><creator>Mézard, M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Distribution of diameters for Erdős-Rényi random graphs</title><author>Hartmann, A K ; Mézard, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmann, A K</creatorcontrib><creatorcontrib>Mézard, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmann, A K</au><au>Mézard, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of diameters for Erdős-Rényi random graphs</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-03</date><risdate>2018</risdate><volume>97</volume><issue>3-1</issue><spage>032128</spage><epage>032128</epage><pages>032128-032128</pages><artnum>032128</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.</abstract><cop>United States</cop><pmid>29776040</pmid><doi>10.1103/PhysRevE.97.032128</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2018-03, Vol.97 (3-1), p.032128-032128, Article 032128 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2041640603 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Distribution of diameters for Erdős-Rényi random graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20diameters%20for%20Erd%C5%91s-R%C3%A9nyi%20random%20graphs&rft.jtitle=Physical%20review.%20E&rft.au=Hartmann,%20A%20K&rft.date=2018-03&rft.volume=97&rft.issue=3-1&rft.spage=032128&rft.epage=032128&rft.pages=032128-032128&rft.artnum=032128&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.97.032128&rft_dat=%3Cproquest_cross%3E2041640603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a155798c3393e6a5d0f1be836cef6e88bf0544b6d91284a2bc0c41a66445a1de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041640603&rft_id=info:pmid/29776040&rfr_iscdi=true |