Loading…
F2-isoprostanes and F4-neuroprostanes as markers of intracranial aneurysm development
Intracranial aneurysms are common, occurring in about 1-2% of the population. Saccular aneurysm is a pouch-like pathological dilatation of an intracranial artery that develops when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends. The aim of this study was to det...
Saved in:
Published in: | Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2018-05, Vol.27 (5), p.673-680 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intracranial aneurysms are common, occurring in about 1-2% of the population. Saccular aneurysm is a pouch-like pathological dilatation of an intracranial artery that develops when the cerebral artery wall becomes too weak to resist hemodynamic pressure and distends.
The aim of this study was to determine whether the development of intracranial aneurysms and subarachnoid hemorrhage (SAH) affects neuronal phospholipid metabolism, and what influence different invasive treatments have on brain free radical phospholipid metabolism.
The level of polyunsaturated fatty acid (PUFA) cyclization products - F2-isoprostanes and F4-neuroprostanes - was examined using liquid chromatography - mass spectrometry (LC-MS) in the plasma of patients with brain aneurysm and resulting subarachnoid hemorrhage.
It was revealed that an aneurysm leads to the enhancement of lipid peroxidation with a significant increase in plasma F2-isoprostanes and F4-neuroprostanes (more than 3-fold and 11-fold, respectively) in comparison to healthy subjects. The rupture of an aneurysm results in hemorrhage and an additional increase in examined prostaglandin derivatives. The embolization and clipping of aneurysms contribute to a gradual restoration of metabolic homeostasis in brain cells, which is visible in the decrease in PUFA cyclization products.
The results indicate that aneurysm development is associated with enhanced inflammation and oxidative stress, factors which favor lipid peroxidation, particularly in neurons, whose membranes are rich in docosahexaenoic acid, a precursor of F4-neuroprostanes. |
---|---|
ISSN: | 1899-5276 |
DOI: | 10.17219/acem/68634 |