Loading…

Topography and geomorphology of the Huygens landing site on Titan

The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images...

Full description

Saved in:
Bibliographic Details
Published in:Planetary and space science 2007-11, Vol.55 (13), p.2015-2024
Main Authors: Soderblom, Laurence A., Tomasko, Martin G., Archinal, Brent A., Becker, Tammy L., Bushroe, Michael W., Cook, Debbie A., Doose, Lyn R., Galuszka, Donna M., Hare, Trent M., Howington-Kraus, Elpitha, Karkoschka, Erich, Kirk, Randolph L., Lunine, Jonathan I., McFarlane, Elisabeth A., Redding, Bonnie L., Rizk, Bashar, Rosiek, Mark R., See, Charles, Smith, Peter H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30° appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ∼100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the “coastline” at the highland–lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland–lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland–lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north.
ISSN:0032-0633
1873-5088
DOI:10.1016/j.pss.2007.04.015