Loading…

Biochemical responses of the desiccation-tolerant resurrection fern Pleopeltis polypodioides to dehydration and rehydration

The epiphytic fern Pleopeltis polypodioides can tolerate repeated drying and rehydration events without conspicuous damage. To understand the biochemical principles of drought-tolerance, we analyzed the effect of dehydration and rehydration at 25 °C on hydroperoxide and lipid hydroperoxide, the acti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology 2018-09, Vol.228, p.12-18
Main Authors: John, Susan P., Hasenstein, Karl H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The epiphytic fern Pleopeltis polypodioides can tolerate repeated drying and rehydration events without conspicuous damage. To understand the biochemical principles of drought-tolerance, we analyzed the effect of dehydration and rehydration at 25 °C on hydroperoxide and lipid hydroperoxide, the activities of antioxidative (catalase and glutathione-oxidizing) enzymes and evaluated changes in fatty acid composition and saturation levels. Dehydration increased peroxide concentration and the activity of glutathione oxidases, but reduced catalase activity. During dehydration, the biosynthesis of palmitic (C16:0), linoleic (C18:2), linolenic (C18:3) and stearic acid (C18:0) increased 18, 12, 20, and 8-fold, respectively. In contrast, rehydration lowered levels of peroxides, the activity of glutathione-oxidizing enzymes, and fatty acids but increased catalase activity. The coordinated changes during de- and rehydration suggest that lipids and oxidative and antioxidative enzymes are components of the drought-resistance system.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2018.05.006