Loading…
Performance, insulin sensitivity, carcass characteristics, and fatty acid profile of beef from steers fed microalgae
Heterotrophic production of microalgae biomass provides a consistent, high-quality source of docosahexaenoic acid (DHA; C22:6 n-3) in triglyceride oils that could be used as a ration supplement for feedlot steers to improve nutritional qualities of beef. Sixty Angus × Simmental steers (438 ± 6.4 kg)...
Saved in:
Published in: | Journal of animal science 2018-08, Vol.96 (8), p.3433-3445 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heterotrophic production of microalgae biomass provides a consistent, high-quality source of docosahexaenoic acid (DHA; C22:6 n-3) in triglyceride oils that could be used as a ration supplement for feedlot steers to improve nutritional qualities of beef. Sixty Angus × Simmental steers (438 ± 6.4 kg) were allotted to two treatments (30 steers each, six pens, five steers/pen) to determine the effects of ForPLUS (DHA-rich microalgae Aurantiochytrium limacinum; 63.6% fat; 17.9% DHA; 30 mg/kg Sel-Plex; Alltech Inc.) on performance, insulin sensitivity, LM fatty acid composition, and meat quality. Steers were fed basal diets containing 45% corn, 30% distillers dried grains with solubles, 20% corn silage, and 5% supplement. Basal diets were formulated to contain 16.1% CP and 1.32 Mcal/kg NEg. Treatments were delivered to steers in a ground corn-based top-dress (454 g total/steer) and contained no microalgae for control steers or 100 g/steer daily of ForPLUS for microalgae steers. A glucose tolerance test (GTT) was performed 10 d prior to slaughter. Steers were slaughtered when a target pen BW of 621 kg was achieved. Fatty acid oxidation potential was determined by measuring thiobarbituric acid reactive substances (TBARS) on LM samples collected 24 h after slaughter and aged for 48 h or 21 d. Weight and BW gain did not differ during the study (P ≥ 0.13); however, steers fed microalgae remained in the feedlot seven more days compared to steers fed the control diet (111 vs. 104 d; P = 0.04). Overall DMI decreased (P = 0.002) and G:F increased during the second half of the study (P = 0.04) in steers fed microalgae compared to steers fed the control diet. Steers fed microalgae secreted less insulin (P = 0.01) and took longer to clear glucose (P = 0.01) during a 2-h GTT. Carcass traits did not differ between treatments (P ≥ 0.23). Microalgae had no effect on n-6 content (P = 0.67), but more than doubled the n-3 fatty acid percentage and the n-3:n-6 ratio of the LM (P < 0.0001). The percentage of n-3 fatty acids C20:5 and C22:6 were increased (P < 0.0001) 4-fold and 6.25-fold, respectively, by microalgae supplementation. Concentration of TBARS did not differ in LM aged for 48 h (P = 0.91); however, when aged for 21 d, steers fed microalgae tended to produce LM with greater TBARS concentration compared to steers fed the control diet (P = 0.08). In conclusion, DHA-rich microalgae decreased DMI of steers, and increased n-3 fatty acids and beef oxidation in steaks aged for |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.1093/jas/sky210 |