Loading…
Arrestin-2 Interacts with the Ubiquitin-Protein Isopeptide Ligase Atrophin-interacting Protein 4 and Mediates Endosomal Sorting of the Chemokine Receptor CXCR4
The chemokine receptor CXCR4 is rapidly targeted for lysosomal degradation by the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4). Although it is known that AIP4 mediates ubiquitination and degradation of CXCR4 and that perturbations in these events contribute to disease, the mechanisms me...
Saved in:
Published in: | The Journal of biological chemistry 2007-12, Vol.282 (51), p.36971-36979 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The chemokine receptor CXCR4 is rapidly targeted for lysosomal degradation by the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4). Although it is known that AIP4 mediates ubiquitination and degradation of CXCR4 and that perturbations in these events contribute to disease, the mechanisms mediating AIP4-dependent regulation of CXCR4 degradation remain poorly understood. Here we show that AIP4 directly interacts with the amino-terminal half of nonvisual arrestin-2 via its WW domains. We show that depletion of arrestin-2 by small interfering RNA blocks agonist-promoted degradation of CXCR4 by preventing CXCR4 trafficking from early endosomes to lysosomes. Surprisingly, CXCR4 internalization and ubiquitination remain intact, suggesting that the interaction between arrestin-2 and AIP4 is not required for ubiquitination of the receptor at the plasma membrane but perhaps for a later post-internalization event. Accordingly, we show that activation of CXCR4 promotes the interaction between AIP4 and arrestin-2 that is consistent with a time when AIP4 co-localizes with arrestin-2 on endocytic vesicles. Taken together, our data suggest that the AIP4·arrestin-2 complex functions on endosomes to regulate sorting of CXCR4 into the degradative pathway. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M705085200 |