Loading…

observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation

The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance sc...

Full description

Saved in:
Bibliographic Details
Published in:Oikos 2007, Vol.116 (1), p.174-180
Main Authors: Ballantyne IV, Ford, J. Kerkhoff, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3
cites cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3
container_end_page 180
container_issue 1
container_start_page 174
container_title Oikos
container_volume 116
creator Ballantyne IV, Ford
J. Kerkhoff, Andrew
description The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1
doi_str_mv 10.1111/j.2006.0030-1299.15383.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20462990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40234990</jstor_id><sourcerecordid>40234990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</originalsourceid><addsrcrecordid>eNqNksGO0zAQhiMEEmXhERAWEtwSxnESJxckdgVlxWr3ACsQF2uSjItLahc7Le3b42xWReKEL7Y8n3-NPztJGIeMx_FmneUAVQYgIOV502S8FLXIDg-SBa8AUpBQPUwWp_rj5EkIawCQUhaL5IdrA_k99cyjXRHTzrORNlvncWAbQpvu0Ru0HbHQ4WDsitFh6yzZMbAOLWtp2hjQ2JjRHpmnrXf9rhvNnljnvKcBR-Ps0-SRxiHQs_v5LLn98P7Lxcf06mZ5efHuKu1KUYm0l7zEtkDS2De9LKiTuuR1LWWDVdsUUGqsEDUvm7jPeY-81wVB3YKQpdTiLHk958Y2fu0ojGpjQkfDgJbcLqgciipqgAi-_Adcu523sTeVc140VQ0TVM9Q510InrTaerNBf1Qc1ORfrdXkX01-1eRX3flXh3j01X0-TuZ09NuZ8Pd8XTSirPPIvZ2532ag43_nq5vLT3fLGPB8DliH0flTQAG5KOaLpnPdhJEOpzr6n6qSUZr6er1U599KkN-vK7WM_IuZ1-gUrnxs-vZzDlzEPyNkfB_xBxO2vAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211496800</pqid></control><display><type>article</type><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</creator><creatorcontrib>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</creatorcontrib><description>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1&lt;=b&lt;=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</description><identifier>ISSN: 0030-1299</identifier><identifier>EISSN: 1600-0706</identifier><identifier>DOI: 10.1111/j.2006.0030-1299.15383.x</identifier><identifier>CODEN: OIKSAA</identifier><language>eng</language><publisher>Copenhagen: Copenhagen : Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal populations ; Animal reproduction ; Animal, plant and microbial ecology ; Biological and medical sciences ; Correlation analysis ; Covariance ; Demecology ; Demography ; Forum ; Fundamental and applied biological sciences. Psychology ; General aspects ; growth models ; Mating behavior ; Population dynamics ; Population ecology ; population growth ; Population mean ; Population size ; Population studies ; Power laws ; reproductive behavior ; Statistical variance ; Theory ; Variance analysis</subject><ispartof>Oikos, 2007, Vol.116 (1), p.174-180</ispartof><rights>Copyright 2007 Oikos</rights><rights>2007 INIST-CNRS</rights><rights>OIKOS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</citedby><cites>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40234990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40234990$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18493582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballantyne IV, Ford</creatorcontrib><creatorcontrib>J. Kerkhoff, Andrew</creatorcontrib><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><title>Oikos</title><addtitle>Oikos</addtitle><description>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1&lt;=b&lt;=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</description><subject>Animal and plant ecology</subject><subject>Animal populations</subject><subject>Animal reproduction</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Correlation analysis</subject><subject>Covariance</subject><subject>Demecology</subject><subject>Demography</subject><subject>Forum</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>growth models</subject><subject>Mating behavior</subject><subject>Population dynamics</subject><subject>Population ecology</subject><subject>population growth</subject><subject>Population mean</subject><subject>Population size</subject><subject>Population studies</subject><subject>Power laws</subject><subject>reproductive behavior</subject><subject>Statistical variance</subject><subject>Theory</subject><subject>Variance analysis</subject><issn>0030-1299</issn><issn>1600-0706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNksGO0zAQhiMEEmXhERAWEtwSxnESJxckdgVlxWr3ACsQF2uSjItLahc7Le3b42xWReKEL7Y8n3-NPztJGIeMx_FmneUAVQYgIOV502S8FLXIDg-SBa8AUpBQPUwWp_rj5EkIawCQUhaL5IdrA_k99cyjXRHTzrORNlvncWAbQpvu0Ru0HbHQ4WDsitFh6yzZMbAOLWtp2hjQ2JjRHpmnrXf9rhvNnljnvKcBR-Ps0-SRxiHQs_v5LLn98P7Lxcf06mZ5efHuKu1KUYm0l7zEtkDS2De9LKiTuuR1LWWDVdsUUGqsEDUvm7jPeY-81wVB3YKQpdTiLHk958Y2fu0ojGpjQkfDgJbcLqgciipqgAi-_Adcu523sTeVc140VQ0TVM9Q510InrTaerNBf1Qc1ORfrdXkX01-1eRX3flXh3j01X0-TuZ09NuZ8Pd8XTSirPPIvZ2532ag43_nq5vLT3fLGPB8DliH0flTQAG5KOaLpnPdhJEOpzr6n6qSUZr6er1U599KkN-vK7WM_IuZ1-gUrnxs-vZzDlzEPyNkfB_xBxO2vAA</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Ballantyne IV, Ford</creator><creator>J. Kerkhoff, Andrew</creator><general>Copenhagen : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>2007</creationdate><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><author>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal populations</topic><topic>Animal reproduction</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Correlation analysis</topic><topic>Covariance</topic><topic>Demecology</topic><topic>Demography</topic><topic>Forum</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>growth models</topic><topic>Mating behavior</topic><topic>Population dynamics</topic><topic>Population ecology</topic><topic>population growth</topic><topic>Population mean</topic><topic>Population size</topic><topic>Population studies</topic><topic>Power laws</topic><topic>reproductive behavior</topic><topic>Statistical variance</topic><topic>Theory</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballantyne IV, Ford</creatorcontrib><creatorcontrib>J. Kerkhoff, Andrew</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Oikos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballantyne IV, Ford</au><au>J. Kerkhoff, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</atitle><jtitle>Oikos</jtitle><addtitle>Oikos</addtitle><date>2007</date><risdate>2007</risdate><volume>116</volume><issue>1</issue><spage>174</spage><epage>180</epage><pages>174-180</pages><issn>0030-1299</issn><eissn>1600-0706</eissn><coden>OIKSAA</coden><abstract>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1&lt;=b&lt;=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</abstract><cop>Copenhagen</cop><pub>Copenhagen : Blackwell Publishing Ltd</pub><doi>10.1111/j.2006.0030-1299.15383.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-1299
ispartof Oikos, 2007, Vol.116 (1), p.174-180
issn 0030-1299
1600-0706
language eng
recordid cdi_proquest_miscellaneous_20462990
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Animal and plant ecology
Animal populations
Animal reproduction
Animal, plant and microbial ecology
Biological and medical sciences
Correlation analysis
Covariance
Demecology
Demography
Forum
Fundamental and applied biological sciences. Psychology
General aspects
growth models
Mating behavior
Population dynamics
Population ecology
population growth
Population mean
Population size
Population studies
Power laws
reproductive behavior
Statistical variance
Theory
Variance analysis
title observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=observed%20range%20for%20temporal%20mean-variance%20scaling%20exponents%20can%20be%20explained%20by%20reproductive%20correlation&rft.jtitle=Oikos&rft.au=Ballantyne%20IV,%20Ford&rft.date=2007&rft.volume=116&rft.issue=1&rft.spage=174&rft.epage=180&rft.pages=174-180&rft.issn=0030-1299&rft.eissn=1600-0706&rft.coden=OIKSAA&rft_id=info:doi/10.1111/j.2006.0030-1299.15383.x&rft_dat=%3Cjstor_proqu%3E40234990%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211496800&rft_id=info:pmid/&rft_jstor_id=40234990&rfr_iscdi=true