Loading…
observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation
The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance sc...
Saved in:
Published in: | Oikos 2007, Vol.116 (1), p.174-180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3 |
container_end_page | 180 |
container_issue | 1 |
container_start_page | 174 |
container_title | Oikos |
container_volume | 116 |
creator | Ballantyne IV, Ford J. Kerkhoff, Andrew |
description | The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1 |
doi_str_mv | 10.1111/j.2006.0030-1299.15383.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20462990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40234990</jstor_id><sourcerecordid>40234990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</originalsourceid><addsrcrecordid>eNqNksGO0zAQhiMEEmXhERAWEtwSxnESJxckdgVlxWr3ACsQF2uSjItLahc7Le3b42xWReKEL7Y8n3-NPztJGIeMx_FmneUAVQYgIOV502S8FLXIDg-SBa8AUpBQPUwWp_rj5EkIawCQUhaL5IdrA_k99cyjXRHTzrORNlvncWAbQpvu0Ru0HbHQ4WDsitFh6yzZMbAOLWtp2hjQ2JjRHpmnrXf9rhvNnljnvKcBR-Ps0-SRxiHQs_v5LLn98P7Lxcf06mZ5efHuKu1KUYm0l7zEtkDS2De9LKiTuuR1LWWDVdsUUGqsEDUvm7jPeY-81wVB3YKQpdTiLHk958Y2fu0ojGpjQkfDgJbcLqgciipqgAi-_Adcu523sTeVc140VQ0TVM9Q510InrTaerNBf1Qc1ORfrdXkX01-1eRX3flXh3j01X0-TuZ09NuZ8Pd8XTSirPPIvZ2532ag43_nq5vLT3fLGPB8DliH0flTQAG5KOaLpnPdhJEOpzr6n6qSUZr6er1U599KkN-vK7WM_IuZ1-gUrnxs-vZzDlzEPyNkfB_xBxO2vAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211496800</pqid></control><display><type>article</type><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</creator><creatorcontrib>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</creatorcontrib><description>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1<=b<=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</description><identifier>ISSN: 0030-1299</identifier><identifier>EISSN: 1600-0706</identifier><identifier>DOI: 10.1111/j.2006.0030-1299.15383.x</identifier><identifier>CODEN: OIKSAA</identifier><language>eng</language><publisher>Copenhagen: Copenhagen : Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal populations ; Animal reproduction ; Animal, plant and microbial ecology ; Biological and medical sciences ; Correlation analysis ; Covariance ; Demecology ; Demography ; Forum ; Fundamental and applied biological sciences. Psychology ; General aspects ; growth models ; Mating behavior ; Population dynamics ; Population ecology ; population growth ; Population mean ; Population size ; Population studies ; Power laws ; reproductive behavior ; Statistical variance ; Theory ; Variance analysis</subject><ispartof>Oikos, 2007, Vol.116 (1), p.174-180</ispartof><rights>Copyright 2007 Oikos</rights><rights>2007 INIST-CNRS</rights><rights>OIKOS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</citedby><cites>FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40234990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40234990$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18493582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballantyne IV, Ford</creatorcontrib><creatorcontrib>J. Kerkhoff, Andrew</creatorcontrib><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><title>Oikos</title><addtitle>Oikos</addtitle><description>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1<=b<=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</description><subject>Animal and plant ecology</subject><subject>Animal populations</subject><subject>Animal reproduction</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Correlation analysis</subject><subject>Covariance</subject><subject>Demecology</subject><subject>Demography</subject><subject>Forum</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>growth models</subject><subject>Mating behavior</subject><subject>Population dynamics</subject><subject>Population ecology</subject><subject>population growth</subject><subject>Population mean</subject><subject>Population size</subject><subject>Population studies</subject><subject>Power laws</subject><subject>reproductive behavior</subject><subject>Statistical variance</subject><subject>Theory</subject><subject>Variance analysis</subject><issn>0030-1299</issn><issn>1600-0706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNksGO0zAQhiMEEmXhERAWEtwSxnESJxckdgVlxWr3ACsQF2uSjItLahc7Le3b42xWReKEL7Y8n3-NPztJGIeMx_FmneUAVQYgIOV502S8FLXIDg-SBa8AUpBQPUwWp_rj5EkIawCQUhaL5IdrA_k99cyjXRHTzrORNlvncWAbQpvu0Ru0HbHQ4WDsitFh6yzZMbAOLWtp2hjQ2JjRHpmnrXf9rhvNnljnvKcBR-Ps0-SRxiHQs_v5LLn98P7Lxcf06mZ5efHuKu1KUYm0l7zEtkDS2De9LKiTuuR1LWWDVdsUUGqsEDUvm7jPeY-81wVB3YKQpdTiLHk958Y2fu0ojGpjQkfDgJbcLqgciipqgAi-_Adcu523sTeVc140VQ0TVM9Q510InrTaerNBf1Qc1ORfrdXkX01-1eRX3flXh3j01X0-TuZ09NuZ8Pd8XTSirPPIvZ2532ag43_nq5vLT3fLGPB8DliH0flTQAG5KOaLpnPdhJEOpzr6n6qSUZr6er1U599KkN-vK7WM_IuZ1-gUrnxs-vZzDlzEPyNkfB_xBxO2vAA</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Ballantyne IV, Ford</creator><creator>J. Kerkhoff, Andrew</creator><general>Copenhagen : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>2007</creationdate><title>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</title><author>Ballantyne IV, Ford ; J. Kerkhoff, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal populations</topic><topic>Animal reproduction</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Correlation analysis</topic><topic>Covariance</topic><topic>Demecology</topic><topic>Demography</topic><topic>Forum</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>growth models</topic><topic>Mating behavior</topic><topic>Population dynamics</topic><topic>Population ecology</topic><topic>population growth</topic><topic>Population mean</topic><topic>Population size</topic><topic>Population studies</topic><topic>Power laws</topic><topic>reproductive behavior</topic><topic>Statistical variance</topic><topic>Theory</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballantyne IV, Ford</creatorcontrib><creatorcontrib>J. Kerkhoff, Andrew</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Oikos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballantyne IV, Ford</au><au>J. Kerkhoff, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation</atitle><jtitle>Oikos</jtitle><addtitle>Oikos</addtitle><date>2007</date><risdate>2007</risdate><volume>116</volume><issue>1</issue><spage>174</spage><epage>180</epage><pages>174-180</pages><issn>0030-1299</issn><eissn>1600-0706</eissn><coden>OIKSAA</coden><abstract>The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1<=b<=2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.</abstract><cop>Copenhagen</cop><pub>Copenhagen : Blackwell Publishing Ltd</pub><doi>10.1111/j.2006.0030-1299.15383.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-1299 |
ispartof | Oikos, 2007, Vol.116 (1), p.174-180 |
issn | 0030-1299 1600-0706 |
language | eng |
recordid | cdi_proquest_miscellaneous_20462990 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Animal and plant ecology Animal populations Animal reproduction Animal, plant and microbial ecology Biological and medical sciences Correlation analysis Covariance Demecology Demography Forum Fundamental and applied biological sciences. Psychology General aspects growth models Mating behavior Population dynamics Population ecology population growth Population mean Population size Population studies Power laws reproductive behavior Statistical variance Theory Variance analysis |
title | observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=observed%20range%20for%20temporal%20mean-variance%20scaling%20exponents%20can%20be%20explained%20by%20reproductive%20correlation&rft.jtitle=Oikos&rft.au=Ballantyne%20IV,%20Ford&rft.date=2007&rft.volume=116&rft.issue=1&rft.spage=174&rft.epage=180&rft.pages=174-180&rft.issn=0030-1299&rft.eissn=1600-0706&rft.coden=OIKSAA&rft_id=info:doi/10.1111/j.2006.0030-1299.15383.x&rft_dat=%3Cjstor_proqu%3E40234990%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5363-d715ab4aefad9d74ec7f5188779a6b9405fa6aaf159f5111da1df4e08b03757f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211496800&rft_id=info:pmid/&rft_jstor_id=40234990&rfr_iscdi=true |