Loading…
Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean
To identify markers for the Phytophthora resistance gene, Rps1‐d, 123 F2 : 3 families were produced from a cross between Glycine max (L.) Merr. ‘Tanbakuro’ (a Japanese traditional black soybean) and PI103091 (Rps1‐d) as an experimental population. The results of virulence tests produced 33 homozygou...
Saved in:
Published in: | Plant breeding 2008-04, Vol.127 (2), p.154-159 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To identify markers for the Phytophthora resistance gene, Rps1‐d, 123 F2 : 3 families were produced from a cross between Glycine max (L.) Merr. ‘Tanbakuro’ (a Japanese traditional black soybean) and PI103091 (Rps1‐d) as an experimental population. The results of virulence tests produced 33 homozygous resistant, 61 segregating and 29 homozygous susceptible F2 : 3 families. The chi‐squared test gave a goodness‐of‐fit for the expected ratio of 1 : 2 : 1 for resistant, segregating and susceptible traits, suggesting that the inheritance of Rps1‐d is controlled by a monogenic dominant gene. Simple sequence repeat (SSR) analyses of this trait were carried out using the cultivars ‘Tanbakuro’ and PI103091. Sixteen SSR primers, which produced 19 polymorphic fragments between the two parents, were identified from 41 SSR primers in MLG N. Eight SSR markers were related to Rps1‐d, based on 32 of the 123 F2 : 3 families, consisting of 16 homozygous resistant and 16 homozygous susceptible lines. The remaining 91 families were analysed for these eight markers, and a linkage map was constructed using all 123 F2 : 3 families. The length of this linkage group is 44.0 cM. The closest markers, Sat_186 and Satt152, are mapped at 5.7 cM and 11.5 cM, respectively, on either side of the Rps1‐d gene. Three‐way contingency table analysis indicates that dual‐marker‐assisted selection using these two flanking markers would be efficient. |
---|---|
ISSN: | 0179-9541 1439-0523 |
DOI: | 10.1111/j.1439-0523.2007.01440.x |