Loading…
Ferrimagnetism as a Consequence of Unusual Cation Ordering in the Perovskite SrLa2FeCoSbO9
A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mössbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P21/n; a = 5.6218(6), b = 5.6221...
Saved in:
Published in: | Inorganic chemistry 2018-06, Vol.57 (12), p.7438-7445 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mössbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P21/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) Å, β = 90.050(7)° at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co2+, 1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of ∼1 μB per formula unit at 5 K. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.8b01012 |