Loading…

Direct energy transfer to study the 3D structure of non-native proteins: AGH complex in molten globule state of apomyoglobin

The direct energy transfer technique was modified and applied to probe the relative localization of apomyoglobin A-, G- and H-helixes, which are partly protected from deuterium exchange in the equilibrium molten globule state and in the molten globule-like kinetic intermediate. The non-radiative tra...

Full description

Saved in:
Bibliographic Details
Published in:Protein engineering 1999-06, Vol.12 (6), p.485-490
Main Authors: Tcherkasskaya, Olga, Ptitsyn, Oleg B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The direct energy transfer technique was modified and applied to probe the relative localization of apomyoglobin A-, G- and H-helixes, which are partly protected from deuterium exchange in the equilibrium molten globule state and in the molten globule-like kinetic intermediate. The non-radiative transfer of tryptophan electronic energy to 3-nitrotyrosine was studied in different conformational states of apomyoglobin (native, molten globule, unfolded) and interpreted in terms of average distances between groups of the protein chain. The experimental data show that the distance between the middle of A-helix and the N-terminus of G-helix as well as the distance between the middle of the A-helix and the C-terminus of the H-helix in the molten globule state are close to those in the native state. This is a strong argument in favor of similarity of the overall architecture of the molten globule and native states.
ISSN:0269-2139
1741-0126
1460-213X
1741-0134
DOI:10.1093/protein/12.6.485