Application of artificial neural networks in typhoon surge forecasting

A typhoon-surge forecasting model was developed with a back-propagation neural network (BPN) in the present paper. The typhoon's characteristics, local meteorological conditions and typhoon surges at a considered tidal station at time t−1 and t were used as input data of the model to forecast t...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2007-08, Vol.34 (11), p.1757-1768
Main Authors: Tseng, C.M., Jan, C.D., Wang, J.S., Wang, C.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A typhoon-surge forecasting model was developed with a back-propagation neural network (BPN) in the present paper. The typhoon's characteristics, local meteorological conditions and typhoon surges at a considered tidal station at time t−1 and t were used as input data of the model to forecast typhoon surges at the following time. For the selection of a better forecasting model, four models (Models A–D) were tested and compared under the different composition of the above-mentioned input factors. A general evaluation index that is a composition of four performance indexes was proposed to evaluate the model's overall performance. The result of typhoon-surge forecasting was classified into five grades: A (excellent), B (good), C (fair), D (poor) and E (bad), according to the value of the general evaluation index. Sixteen typhoon events and their corresponding typhoon surges and local meteorological conditions at Ken–fang Tidal Station in the coast of north-eastern Taiwan between 1993 and 2000 were collected, 12 of them were used in model's calibration while the other four were used in model's verification. The analysis of typhoon-surge forecasting results at Ken–fang tidal station show that the Model D composing 18 input factors has better performance, and that it is a suitable BPN-based model in typhoon-surge forecasting. The Model D was also applied to typhoon-surge forecasting at Cheng-kung Tidal Station in south-eastern coast of Taiwan and at Tung-shih Tidal Station in the coast of south-western Taiwan. Results show that the application of Model D in typhoon-surge forecasting at Cheng-kung Tidal Station has better performance than that at Tung-shih Tidal Station.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2006.09.005