Loading…

Metal toxicity in two rodent species and redox potential: evaluation of quantitative structure-activity relationships

A quantitative structure-activity relationship study of acute toxicity in the mouse and rat is described for the soluble salts of a relatively large number of metals (between 25 and 30 in total). Electrode potential is the major determinant of acute metal toxicity (R = 0.85 and 0.86) for an intraper...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 1999-10, Vol.18 (10), p.2199-2204
Main Authors: Lewis, D.F.V, Dobrota, M, Taylor, M.G, Parke, D.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A quantitative structure-activity relationship study of acute toxicity in the mouse and rat is described for the soluble salts of a relatively large number of metals (between 25 and 30 in total). Electrode potential is the major determinant of acute metal toxicity (R = 0.85 and 0.86) for an intraperitoneal dose in the mouse, whereas the addition of ionic radius and polarizability enables the inclusion of notable outliers in the original expression, such as beryllium and barium, thus giving a good correlation (R = 0.87) with toxicity for 27 metal compounds. These findings are rationalized on the basis of relative ease of ionization, electron affinity, and transport factors of the metals and their ions, thus being consistent with the hard and soft acids and bases properties of metals and their biological reactivities.
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.5620181012