Loading…

Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector

Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitchin...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (28), p.e1801182-n/a
Main Authors: Chang, Kyoung Eun, Yoo, Tae Jin, Kim, Cihyun, Kim, Yun Ji, Lee, Sang Kyung, Kim, So‐Young, Heo, Sunwoo, Kwon, Min Gyu, Lee, Byoung Hun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53
cites cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53
container_end_page n/a
container_issue 28
container_start_page e1801182
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Chang, Kyoung Eun
Yoo, Tae Jin
Kim, Cihyun
Kim, Yun Ji
Lee, Sang Kyung
Kim, So‐Young
Heo, Sunwoo
Kwon, Min Gyu
Lee, Byoung Hun
description Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.
doi_str_mv 10.1002/smll.201801182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051657483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068321469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhi3UCihw5Ygi9dJLwoy967WPKLRpq6AiBc6rXXuibHDWqb0rlFsfAYk37JPgKBCkXnqa0a9vfo0-xs4RRgjAL-PKuREHVICo-AE7RoliKBXXH_Y7whH7FOMSQCDPikN2xLUqCsjgmF1Pqo7-_nka-7YL3jmyg0mo1gtqU_o8a1xjfDuYmYXvuofN4Gffmq5JyW0KvKWOTOfDKfs4r1yks9d5wu6_fb0bfx9Of01-jK-mQyMKwYcZaqLKSlmTyUWuaqAi45xqYQ0IsIXVhRUagVRdgc0QJeVa1yiVEnqeixP2Zde7Dv53T7ErV0005FzVku9jySFHmReZEgn9_A-69H1o03eJkkpwzKRO1GhHmeBjDDQv16FZVWFTIpRbv-XWb7n3mw4uXmv7ekV2j78JTYDeAY-No81_6srZzXT6Xv4CgvqIRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068321469</pqid></control><display><type>article</type><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</creator><creatorcontrib>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</creatorcontrib><description>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201801182</identifier><identifier>PMID: 29877040</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Dark current ; Graphene ; graphene–silicon heterostructure photodetectors ; graphene–silicon hybrid photodetectors ; heterostructures ; hybridstructures ; Nanotechnology ; photodetectors ; Photometers ; Schottky contacts ; Silicon</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (28), p.e1801182-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</citedby><cites>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29877040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Kyoung Eun</creatorcontrib><creatorcontrib>Yoo, Tae Jin</creatorcontrib><creatorcontrib>Kim, Cihyun</creatorcontrib><creatorcontrib>Kim, Yun Ji</creatorcontrib><creatorcontrib>Lee, Sang Kyung</creatorcontrib><creatorcontrib>Kim, So‐Young</creatorcontrib><creatorcontrib>Heo, Sunwoo</creatorcontrib><creatorcontrib>Kwon, Min Gyu</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</description><subject>Carrier transport</subject><subject>Dark current</subject><subject>Graphene</subject><subject>graphene–silicon heterostructure photodetectors</subject><subject>graphene–silicon hybrid photodetectors</subject><subject>heterostructures</subject><subject>hybridstructures</subject><subject>Nanotechnology</subject><subject>photodetectors</subject><subject>Photometers</subject><subject>Schottky contacts</subject><subject>Silicon</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhi3UCihw5Ygi9dJLwoy967WPKLRpq6AiBc6rXXuibHDWqb0rlFsfAYk37JPgKBCkXnqa0a9vfo0-xs4RRgjAL-PKuREHVICo-AE7RoliKBXXH_Y7whH7FOMSQCDPikN2xLUqCsjgmF1Pqo7-_nka-7YL3jmyg0mo1gtqU_o8a1xjfDuYmYXvuofN4Gffmq5JyW0KvKWOTOfDKfs4r1yks9d5wu6_fb0bfx9Of01-jK-mQyMKwYcZaqLKSlmTyUWuaqAi45xqYQ0IsIXVhRUagVRdgc0QJeVa1yiVEnqeixP2Zde7Dv53T7ErV0005FzVku9jySFHmReZEgn9_A-69H1o03eJkkpwzKRO1GhHmeBjDDQv16FZVWFTIpRbv-XWb7n3mw4uXmv7ekV2j78JTYDeAY-No81_6srZzXT6Xv4CgvqIRw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chang, Kyoung Eun</creator><creator>Yoo, Tae Jin</creator><creator>Kim, Cihyun</creator><creator>Kim, Yun Ji</creator><creator>Lee, Sang Kyung</creator><creator>Kim, So‐Young</creator><creator>Heo, Sunwoo</creator><creator>Kwon, Min Gyu</creator><creator>Lee, Byoung Hun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201807</creationdate><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><author>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier transport</topic><topic>Dark current</topic><topic>Graphene</topic><topic>graphene–silicon heterostructure photodetectors</topic><topic>graphene–silicon hybrid photodetectors</topic><topic>heterostructures</topic><topic>hybridstructures</topic><topic>Nanotechnology</topic><topic>photodetectors</topic><topic>Photometers</topic><topic>Schottky contacts</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Kyoung Eun</creatorcontrib><creatorcontrib>Yoo, Tae Jin</creatorcontrib><creatorcontrib>Kim, Cihyun</creatorcontrib><creatorcontrib>Kim, Yun Ji</creatorcontrib><creatorcontrib>Lee, Sang Kyung</creatorcontrib><creatorcontrib>Kim, So‐Young</creatorcontrib><creatorcontrib>Heo, Sunwoo</creatorcontrib><creatorcontrib>Kwon, Min Gyu</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Kyoung Eun</au><au>Yoo, Tae Jin</au><au>Kim, Cihyun</au><au>Kim, Yun Ji</au><au>Lee, Sang Kyung</au><au>Kim, So‐Young</au><au>Heo, Sunwoo</au><au>Kwon, Min Gyu</au><au>Lee, Byoung Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07</date><risdate>2018</risdate><volume>14</volume><issue>28</issue><spage>e1801182</spage><epage>n/a</epage><pages>e1801182-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29877040</pmid><doi>10.1002/smll.201801182</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (28), p.e1801182-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2051657483
source Wiley-Blackwell Read & Publish Collection
subjects Carrier transport
Dark current
Graphene
graphene–silicon heterostructure photodetectors
graphene–silicon hybrid photodetectors
heterostructures
hybridstructures
Nanotechnology
photodetectors
Photometers
Schottky contacts
Silicon
title Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Controlled%20Graphene%E2%80%93Silicon%20Schottky%20Junction%20Photodetector&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chang,%20Kyoung%20Eun&rft.date=2018-07&rft.volume=14&rft.issue=28&rft.spage=e1801182&rft.epage=n/a&rft.pages=e1801182-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201801182&rft_dat=%3Cproquest_cross%3E2068321469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068321469&rft_id=info:pmid/29877040&rfr_iscdi=true