Loading…
Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector
Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitchin...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (28), p.e1801182-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53 |
container_end_page | n/a |
container_issue | 28 |
container_start_page | e1801182 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Chang, Kyoung Eun Yoo, Tae Jin Kim, Cihyun Kim, Yun Ji Lee, Sang Kyung Kim, So‐Young Heo, Sunwoo Kwon, Min Gyu Lee, Byoung Hun |
description | Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene.
A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface. |
doi_str_mv | 10.1002/smll.201801182 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051657483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068321469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhi3UCihw5Ygi9dJLwoy967WPKLRpq6AiBc6rXXuibHDWqb0rlFsfAYk37JPgKBCkXnqa0a9vfo0-xs4RRgjAL-PKuREHVICo-AE7RoliKBXXH_Y7whH7FOMSQCDPikN2xLUqCsjgmF1Pqo7-_nka-7YL3jmyg0mo1gtqU_o8a1xjfDuYmYXvuofN4Gffmq5JyW0KvKWOTOfDKfs4r1yks9d5wu6_fb0bfx9Of01-jK-mQyMKwYcZaqLKSlmTyUWuaqAi45xqYQ0IsIXVhRUagVRdgc0QJeVa1yiVEnqeixP2Zde7Dv53T7ErV0005FzVku9jySFHmReZEgn9_A-69H1o03eJkkpwzKRO1GhHmeBjDDQv16FZVWFTIpRbv-XWb7n3mw4uXmv7ekV2j78JTYDeAY-No81_6srZzXT6Xv4CgvqIRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068321469</pqid></control><display><type>article</type><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</creator><creatorcontrib>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</creatorcontrib><description>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene.
A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201801182</identifier><identifier>PMID: 29877040</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Dark current ; Graphene ; graphene–silicon heterostructure photodetectors ; graphene–silicon hybrid photodetectors ; heterostructures ; hybridstructures ; Nanotechnology ; photodetectors ; Photometers ; Schottky contacts ; Silicon</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (28), p.e1801182-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</citedby><cites>FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29877040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Kyoung Eun</creatorcontrib><creatorcontrib>Yoo, Tae Jin</creatorcontrib><creatorcontrib>Kim, Cihyun</creatorcontrib><creatorcontrib>Kim, Yun Ji</creatorcontrib><creatorcontrib>Lee, Sang Kyung</creatorcontrib><creatorcontrib>Kim, So‐Young</creatorcontrib><creatorcontrib>Heo, Sunwoo</creatorcontrib><creatorcontrib>Kwon, Min Gyu</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene.
A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</description><subject>Carrier transport</subject><subject>Dark current</subject><subject>Graphene</subject><subject>graphene–silicon heterostructure photodetectors</subject><subject>graphene–silicon hybrid photodetectors</subject><subject>heterostructures</subject><subject>hybridstructures</subject><subject>Nanotechnology</subject><subject>photodetectors</subject><subject>Photometers</subject><subject>Schottky contacts</subject><subject>Silicon</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhi3UCihw5Ygi9dJLwoy967WPKLRpq6AiBc6rXXuibHDWqb0rlFsfAYk37JPgKBCkXnqa0a9vfo0-xs4RRgjAL-PKuREHVICo-AE7RoliKBXXH_Y7whH7FOMSQCDPikN2xLUqCsjgmF1Pqo7-_nka-7YL3jmyg0mo1gtqU_o8a1xjfDuYmYXvuofN4Gffmq5JyW0KvKWOTOfDKfs4r1yks9d5wu6_fb0bfx9Of01-jK-mQyMKwYcZaqLKSlmTyUWuaqAi45xqYQ0IsIXVhRUagVRdgc0QJeVa1yiVEnqeixP2Zde7Dv53T7ErV0005FzVku9jySFHmReZEgn9_A-69H1o03eJkkpwzKRO1GhHmeBjDDQv16FZVWFTIpRbv-XWb7n3mw4uXmv7ekV2j78JTYDeAY-No81_6srZzXT6Xv4CgvqIRw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chang, Kyoung Eun</creator><creator>Yoo, Tae Jin</creator><creator>Kim, Cihyun</creator><creator>Kim, Yun Ji</creator><creator>Lee, Sang Kyung</creator><creator>Kim, So‐Young</creator><creator>Heo, Sunwoo</creator><creator>Kwon, Min Gyu</creator><creator>Lee, Byoung Hun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201807</creationdate><title>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</title><author>Chang, Kyoung Eun ; Yoo, Tae Jin ; Kim, Cihyun ; Kim, Yun Ji ; Lee, Sang Kyung ; Kim, So‐Young ; Heo, Sunwoo ; Kwon, Min Gyu ; Lee, Byoung Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier transport</topic><topic>Dark current</topic><topic>Graphene</topic><topic>graphene–silicon heterostructure photodetectors</topic><topic>graphene–silicon hybrid photodetectors</topic><topic>heterostructures</topic><topic>hybridstructures</topic><topic>Nanotechnology</topic><topic>photodetectors</topic><topic>Photometers</topic><topic>Schottky contacts</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Kyoung Eun</creatorcontrib><creatorcontrib>Yoo, Tae Jin</creatorcontrib><creatorcontrib>Kim, Cihyun</creatorcontrib><creatorcontrib>Kim, Yun Ji</creatorcontrib><creatorcontrib>Lee, Sang Kyung</creatorcontrib><creatorcontrib>Kim, So‐Young</creatorcontrib><creatorcontrib>Heo, Sunwoo</creatorcontrib><creatorcontrib>Kwon, Min Gyu</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Kyoung Eun</au><au>Yoo, Tae Jin</au><au>Kim, Cihyun</au><au>Kim, Yun Ji</au><au>Lee, Sang Kyung</au><au>Kim, So‐Young</au><au>Heo, Sunwoo</au><au>Kwon, Min Gyu</au><au>Lee, Byoung Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07</date><risdate>2018</risdate><volume>14</volume><issue>28</issue><spage>e1801182</spage><epage>n/a</epage><pages>e1801182-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Various photodetectors showing extremely high photoresponsivity have been frequently reported, but many of these photodetectors could not avoid the simultaneous amplification of dark current. A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high on/off photoswitching ratio (≈104), a very high photoresponsivity (≈70 A W−1), and a low dark current in the order of µA cm−2 in a wide wavelength range (395–850 nm) is demonstrated. The photoresponsivity is ≈100 times higher than that of existing commercial photodetectors, and 7000 times higher than that of graphene‐field‐effect transistor‐based photodetectors, while the dark current is similar to or lower than that of commercial photodetectors. This result can be explained by a unique gain mechanism originating from the difference in carrier transport characteristics of silicon and graphene.
A gate‐controlled graphene–silicon Schottky junction photodetector that exhibits a high photoresponsivity and a low dark current with a high on/off photo switching ratio is demonstrated. This result is explained by a unique gain mechanism originating from the gate‐controlled graphene–silicon interface.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29877040</pmid><doi>10.1002/smll.201801182</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (28), p.e1801182-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2051657483 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carrier transport Dark current Graphene graphene–silicon heterostructure photodetectors graphene–silicon hybrid photodetectors heterostructures hybridstructures Nanotechnology photodetectors Photometers Schottky contacts Silicon |
title | Gate‐Controlled Graphene–Silicon Schottky Junction Photodetector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Controlled%20Graphene%E2%80%93Silicon%20Schottky%20Junction%20Photodetector&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chang,%20Kyoung%20Eun&rft.date=2018-07&rft.volume=14&rft.issue=28&rft.spage=e1801182&rft.epage=n/a&rft.pages=e1801182-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201801182&rft_dat=%3Cproquest_cross%3E2068321469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3732-419eead66bec5358b0e7422eb3dc030d7d97d3910e8ba0d4116e599b168839f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068321469&rft_id=info:pmid/29877040&rfr_iscdi=true |