Loading…

The Dissociative Recombination of Protonated Acrylonitrile, CH2CHCNH+, with Implications for the Nitrile Chemistry in Dark Molecular Clouds and the Upper Atmosphere of Titan

Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ~2 meV relative kinetic energy about 50% of the DR events inv...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2009-04, Vol.695 (1), p.317-324
Main Authors: Vigren, E, Hamberg, M, Zhaunerchyk, V, Kamińska, M, Thomas, R. D, Larsson, M, Millar, T. J, Walsh, C, Geppert, W. D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ~2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X-H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 X 10-6 (T/300) - 0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.
ISSN:0004-637X
1538-4357
1538-4357
DOI:10.1088/0004-637X/695/1/317