Loading…

Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures

The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-06, Vol.10 (24), p.20661-20671
Main Authors: Krausmann, Jan, Sanctis, Shawn, Engstler, Jörg, Luysberg, Martina, Bruns, Michael, Schneider, Jörg J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793
cites cdi_FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793
container_end_page 20671
container_issue 24
container_start_page 20661
container_title ACS applied materials & interfaces
container_volume 10
creator Krausmann, Jan
Sanctis, Shawn
Engstler, Jörg
Luysberg, Martina
Bruns, Michael
Schneider, Jörg J
description The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μsat.) of 9.3 cm2 V–1 s–1 (W/L = 500), an on/off ratio (I on/I off) of 5.3 × 109, and a subthreshold swing of 162 mV dec–1, combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In2O3/ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.
doi_str_mv 10.1021/acsami.8b03322
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2053271264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053271264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793</originalsourceid><addsrcrecordid>eNp1kEFPwyAYhonRuDm9ejQcjUk3CrSDoy7OLVkyD_XipaH0q2NpS4U26r-3S-dunvgCz_vm40HoNiTTkNBwprRXlZmKjDBG6Rkah5LzQNCInp9mzkfoyvs9ITGjJLpEIyqFEJGIxqhb7JT7AJw4VfvGuhabGm_sV5BA1YBTbecAvzqrwXvIcbIzdbA0ZTUEjG-t8_hJHd5sjdd1broKb79NDrN3U-thxCtowVnfuk4fCv01uihU6eHmeE7Q2_I5WayCzfZlvXjcBIrJuA2kipmSJM4yzlSkQkkjURQRj-ciL0KSsZwLUmgGQmQRZ1LL_ppTkkkNMZ9LNkH3Q2_j7GcHvk0r4zWUparBdj7tbTA6D2nMe3Q6oLpf1Dso0saZSrmfNCTpQXU6qE6PqvvA3bG7yyrIT_if2x54GIA-mO5t5-r-q_-1_QKe14o3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053271264</pqid></control><display><type>article</type><title>Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Krausmann, Jan ; Sanctis, Shawn ; Engstler, Jörg ; Luysberg, Martina ; Bruns, Michael ; Schneider, Jörg J</creator><creatorcontrib>Krausmann, Jan ; Sanctis, Shawn ; Engstler, Jörg ; Luysberg, Martina ; Bruns, Michael ; Schneider, Jörg J</creatorcontrib><description>The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μsat.) of 9.3 cm2 V–1 s–1 (W/L = 500), an on/off ratio (I on/I off) of 5.3 × 109, and a subthreshold swing of 162 mV dec–1, combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In2O3/ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b03322</identifier><identifier>PMID: 29888585</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-06, Vol.10 (24), p.20661-20671</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793</citedby><cites>FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793</cites><orcidid>0000-0001-8298-2383 ; 0000-0002-8153-9491 ; 0000-0001-8594-9749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29888585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krausmann, Jan</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Engstler, Jörg</creatorcontrib><creatorcontrib>Luysberg, Martina</creatorcontrib><creatorcontrib>Bruns, Michael</creatorcontrib><creatorcontrib>Schneider, Jörg J</creatorcontrib><title>Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μsat.) of 9.3 cm2 V–1 s–1 (W/L = 500), an on/off ratio (I on/I off) of 5.3 × 109, and a subthreshold swing of 162 mV dec–1, combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In2O3/ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwyAYhonRuDm9ejQcjUk3CrSDoy7OLVkyD_XipaH0q2NpS4U26r-3S-dunvgCz_vm40HoNiTTkNBwprRXlZmKjDBG6Rkah5LzQNCInp9mzkfoyvs9ITGjJLpEIyqFEJGIxqhb7JT7AJw4VfvGuhabGm_sV5BA1YBTbecAvzqrwXvIcbIzdbA0ZTUEjG-t8_hJHd5sjdd1broKb79NDrN3U-thxCtowVnfuk4fCv01uihU6eHmeE7Q2_I5WayCzfZlvXjcBIrJuA2kipmSJM4yzlSkQkkjURQRj-ciL0KSsZwLUmgGQmQRZ1LL_ppTkkkNMZ9LNkH3Q2_j7GcHvk0r4zWUparBdj7tbTA6D2nMe3Q6oLpf1Dso0saZSrmfNCTpQXU6qE6PqvvA3bG7yyrIT_if2x54GIA-mO5t5-r-q_-1_QKe14o3</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Krausmann, Jan</creator><creator>Sanctis, Shawn</creator><creator>Engstler, Jörg</creator><creator>Luysberg, Martina</creator><creator>Bruns, Michael</creator><creator>Schneider, Jörg J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8298-2383</orcidid><orcidid>https://orcid.org/0000-0002-8153-9491</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid></search><sort><creationdate>20180620</creationdate><title>Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures</title><author>Krausmann, Jan ; Sanctis, Shawn ; Engstler, Jörg ; Luysberg, Martina ; Bruns, Michael ; Schneider, Jörg J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krausmann, Jan</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Engstler, Jörg</creatorcontrib><creatorcontrib>Luysberg, Martina</creatorcontrib><creatorcontrib>Bruns, Michael</creatorcontrib><creatorcontrib>Schneider, Jörg J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krausmann, Jan</au><au>Sanctis, Shawn</au><au>Engstler, Jörg</au><au>Luysberg, Martina</au><au>Bruns, Michael</au><au>Schneider, Jörg J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>10</volume><issue>24</issue><spage>20661</spage><epage>20671</epage><pages>20661-20671</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μsat.) of 9.3 cm2 V–1 s–1 (W/L = 500), an on/off ratio (I on/I off) of 5.3 × 109, and a subthreshold swing of 162 mV dec–1, combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In2O3/ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29888585</pmid><doi>10.1021/acsami.8b03322</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8298-2383</orcidid><orcidid>https://orcid.org/0000-0002-8153-9491</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-06, Vol.10 (24), p.20661-20671
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2053271264
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transport%20in%20Low-Temperature%20Processed%20Thin-Film%20Transistors%20Based%20on%20Indium%20Oxide/Zinc%20Oxide%20Heterostructures&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Krausmann,%20Jan&rft.date=2018-06-20&rft.volume=10&rft.issue=24&rft.spage=20661&rft.epage=20671&rft.pages=20661-20671&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b03322&rft_dat=%3Cproquest_cross%3E2053271264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-9a63a906bb43a5a19258ff54678df10b3d480fc3e88b5439c9df1420b9ce64793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2053271264&rft_id=info:pmid/29888585&rfr_iscdi=true