Loading…
Pre-treatment of anodic inoculum with nitroethane to improve performance of a microbial fuel cell
Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell (MFC), which significantly reduces the power production capacity and coulombic efficiency (CE) of this system. Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation p...
Saved in:
Published in: | Water science and technology 2018-05, Vol.77 (9-10), p.2491-2496 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell (MFC), which significantly reduces the power production capacity and coulombic efficiency (CE) of this system. Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with CE and maximum volumetric power density of 39.85% and 20.5 W/m
, respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63% reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane, emphasizing the significance of this pre-treatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2018.206 |