Loading…

CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis

In this work, quaternary CdZnTeS quantum dots (QDs) with a particularly strong electrochemiluminescence (ECL) were synthesized as ECL signal labels. The strong ECL signals can be obtained at both cathode and anode with the ECL efficiencies of 19.78% and 1.62%, respectively. The sandwich-structured E...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2018-10, Vol.117, p.145-152
Main Authors: Liang, Xiu-Li, Bao, Ning, Luo, Xiliang, Ding, Shou-Nian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, quaternary CdZnTeS quantum dots (QDs) with a particularly strong electrochemiluminescence (ECL) were synthesized as ECL signal labels. The strong ECL signals can be obtained at both cathode and anode with the ECL efficiencies of 19.78% and 1.62%, respectively. The sandwich-structured ECL immunosensors for the detection of alpha-fetoprotein (AFP) and cancer antigen 125 (CA125) were accomplished with direct ECL image analysis. Under optimal conditions, the QDs-based ECL image immunoanalysis possessed good linearity from 0.5 ng/mL to 20 ng/mL for AFP and from 20 U/mL to 500 U/mL for CA125 with the detection limit of 0.1 ng/mL and 6 U/mL, respectively (S/N = 3), and the lower detection limit obtained by photomultiplier tube were 0.1 fg/mL for AFP and 0.03 mU/mL for CA125 with the wide dynamic range from 0.5 fg/mL to 20 ng/mL and from 0.1 mU/mL to 500 U/mL, respectively (S/N = 3). Furthermore, the ECL immunoanalysis was evaluated with commercial enzyme-linked immunosorbent assay in human serum samples. The good results indicated that CdZnTeS QDs-based ECL biosensor has great potential for fast biomedical screening and multi-assays in clinical diagnosis. •Quaternary CdZnTeS QDs were used as ECL signal labels.•The ECL efficiencies of CdZnTeS QDs at cathode and anode were 19.78% and 1.62%.•The detection of AFP and CA125 were accomplished with direct ECL image analysis.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2018.06.006