Loading…
Gene organization of the ornithine decarboxylase-encoding region in Morganella morganii
The production of putrescine is a relevant property related to food quality and safety. Morganella morganii is responsible for putrescine production in fresh fish decomposition. The aim of this study was to gain deeper insights into the genetic determinants for putrescine production in M. morganii....
Saved in:
Published in: | Journal of applied microbiology 2007-06, Vol.102 (6), p.1551-1560 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The production of putrescine is a relevant property related to food quality and safety. Morganella morganii is responsible for putrescine production in fresh fish decomposition. The aim of this study was to gain deeper insights into the genetic determinants for putrescine production in M. morganii. The 6972 bp DNA region showed the presence of three complete and two partial open reading frames all transcribed in the same direction. The second and third genes putatively coded for an ornithine decarboxylase (SpeF) and a putrescine-ornithine antiporter (PotE), respectively, and constituted an operon. The speF gene has been expressed in Escherichia coli HT414, an ornithine decarboxylase defective mutant, resulting in ornithine decarboxylase activity. The genetic organization of the SpeF-PotE-encoding region in M. morganii is different to that of E. coli and several Salmonella species. The speF gene cloned from M. morganii encodes a functional ornithine decarboxylase involved in putrescine production. Phylogenetic tree based on 16S rDNA showed that ornithine decarboxylase activity is not related to a specific phylogenetic tree branch in Enterobacteriaceae. The identification of the DNA region involved in putrescine production in M. morganii will allow additional research on their induction and regulation in order to minimize putrescine production in foods. |
---|---|
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1111/j.1365-2672.2006.03188.x |