Loading…

Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)

We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perf...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2018-06, Vol.148 (22), p.224103-224103
Main Authors: Kosugi, Taichi, Nishi, Hirofumi, Furukawa, Yoritaka, Matsushita, Yu-ichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43
cites cdi_FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43
container_end_page 224103
container_issue 22
container_start_page 224103
container_title The Journal of chemical physics
container_volume 148
creator Kosugi, Taichi
Nishi, Hirofumi
Furukawa, Yoritaka
Matsushita, Yu-ichiro
description We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perform the calculations for isolated 3d transition metal atoms from V to Cu as a preliminary study. We compare the one-particle Green’s functions obtained in this way and those obtained from the coupled-cluster singles and doubles method. Although the SFT calculation starts from the spin-unpolarized Hartree–Fock state for each of the target systems, the self-consistency loop correctly leads to degenerate spin-polarized ground states. We examine the spectral functions in detail to find their commonalities and differences among the atoms by paying attention to the characteristics of the two approaches. It is demonstrated via the two approaches that calculations based on the density functional theory (DFT) can fail in predicting the orbital energy spectra for spherically symmetric systems. It is found that the two methods are quite reliable and useful beyond DFT.
doi_str_mv 10.1063/1.5029535
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2056395039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056395039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43</originalsourceid><addsrcrecordid>eNp90c1O3DAQB3ALUZUt7YEXQJa4QKXQcRw76yNKKa2E1EO5R44zhqDEXvxx2FvfoOe-Xp-EpLtw6KEnj-Xf_KXxEHLC4JKB5J_YpYBSCS4OyIrBWhW1VHBIVgAlK5QEeUTexfgIAKwuq7fkqFQKauByRX41ftroMETvqLf0JiC6Pz9_R2qzM2nwbq58oCloF4flTidMeqQ6-SnSHAd3TyOOtkCH4X772jaT9IA-bKl2PTU-b0bsCzPmmDDQpW3E-Pet97lb6vOm-fH54j15Y_UY8cP-PCZ3X67vmq_F7febb83VbWEqVqVCcwBpDdiq5gJtzwCF0HptetS8QyOlQVFLjhXMUljsbM_7TjEhQJmKH5PzXewm-KeMMbXTEA2Oo3boc2xLEJIrAVzN9Owf-uhzmAdc1HrNhZDVEnixUyb4GAPadhOGSYdty6BdltSydr-k2Z7uE3M3Yf8qX7Yyg487EM2Q9PKd_0l7BmC7nEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088355644</pqid></control><display><type>article</type><title>Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Kosugi, Taichi ; Nishi, Hirofumi ; Furukawa, Yoritaka ; Matsushita, Yu-ichiro</creator><creatorcontrib>Kosugi, Taichi ; Nishi, Hirofumi ; Furukawa, Yoritaka ; Matsushita, Yu-ichiro</creatorcontrib><description>We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perform the calculations for isolated 3d transition metal atoms from V to Cu as a preliminary study. We compare the one-particle Green’s functions obtained in this way and those obtained from the coupled-cluster singles and doubles method. Although the SFT calculation starts from the spin-unpolarized Hartree–Fock state for each of the target systems, the self-consistency loop correctly leads to degenerate spin-polarized ground states. We examine the spectral functions in detail to find their commonalities and differences among the atoms by paying attention to the characteristics of the two approaches. It is demonstrated via the two approaches that calculations based on the density functional theory (DFT) can fail in predicting the orbital energy spectra for spherically symmetric systems. It is found that the two methods are quite reliable and useful beyond DFT.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5029535</identifier><identifier>PMID: 29907036</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Clusters ; Copper ; Density functional theory ; Electronic structure ; Energy spectra ; Mathematical analysis ; Organic chemistry ; Quantum chemistry</subject><ispartof>The Journal of chemical physics, 2018-06, Vol.148 (22), p.224103-224103</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43</citedby><cites>FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43</cites><orcidid>0000-0003-3379-3361 ; 0000000333793361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5029535$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29907036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosugi, Taichi</creatorcontrib><creatorcontrib>Nishi, Hirofumi</creatorcontrib><creatorcontrib>Furukawa, Yoritaka</creatorcontrib><creatorcontrib>Matsushita, Yu-ichiro</creatorcontrib><title>Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perform the calculations for isolated 3d transition metal atoms from V to Cu as a preliminary study. We compare the one-particle Green’s functions obtained in this way and those obtained from the coupled-cluster singles and doubles method. Although the SFT calculation starts from the spin-unpolarized Hartree–Fock state for each of the target systems, the self-consistency loop correctly leads to degenerate spin-polarized ground states. We examine the spectral functions in detail to find their commonalities and differences among the atoms by paying attention to the characteristics of the two approaches. It is demonstrated via the two approaches that calculations based on the density functional theory (DFT) can fail in predicting the orbital energy spectra for spherically symmetric systems. It is found that the two methods are quite reliable and useful beyond DFT.</description><subject>Clusters</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electronic structure</subject><subject>Energy spectra</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Quantum chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90c1O3DAQB3ALUZUt7YEXQJa4QKXQcRw76yNKKa2E1EO5R44zhqDEXvxx2FvfoOe-Xp-EpLtw6KEnj-Xf_KXxEHLC4JKB5J_YpYBSCS4OyIrBWhW1VHBIVgAlK5QEeUTexfgIAKwuq7fkqFQKauByRX41ftroMETvqLf0JiC6Pz9_R2qzM2nwbq58oCloF4flTidMeqQ6-SnSHAd3TyOOtkCH4X772jaT9IA-bKl2PTU-b0bsCzPmmDDQpW3E-Pet97lb6vOm-fH54j15Y_UY8cP-PCZ3X67vmq_F7febb83VbWEqVqVCcwBpDdiq5gJtzwCF0HptetS8QyOlQVFLjhXMUljsbM_7TjEhQJmKH5PzXewm-KeMMbXTEA2Oo3boc2xLEJIrAVzN9Owf-uhzmAdc1HrNhZDVEnixUyb4GAPadhOGSYdty6BdltSydr-k2Z7uE3M3Yf8qX7Yyg487EM2Q9PKd_0l7BmC7nEc</recordid><startdate>20180614</startdate><enddate>20180614</enddate><creator>Kosugi, Taichi</creator><creator>Nishi, Hirofumi</creator><creator>Furukawa, Yoritaka</creator><creator>Matsushita, Yu-ichiro</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3379-3361</orcidid><orcidid>https://orcid.org/0000000333793361</orcidid></search><sort><creationdate>20180614</creationdate><title>Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)</title><author>Kosugi, Taichi ; Nishi, Hirofumi ; Furukawa, Yoritaka ; Matsushita, Yu-ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clusters</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electronic structure</topic><topic>Energy spectra</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosugi, Taichi</creatorcontrib><creatorcontrib>Nishi, Hirofumi</creatorcontrib><creatorcontrib>Furukawa, Yoritaka</creatorcontrib><creatorcontrib>Matsushita, Yu-ichiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosugi, Taichi</au><au>Nishi, Hirofumi</au><au>Furukawa, Yoritaka</au><au>Matsushita, Yu-ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-06-14</date><risdate>2018</risdate><volume>148</volume><issue>22</issue><spage>224103</spage><epage>224103</epage><pages>224103-224103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perform the calculations for isolated 3d transition metal atoms from V to Cu as a preliminary study. We compare the one-particle Green’s functions obtained in this way and those obtained from the coupled-cluster singles and doubles method. Although the SFT calculation starts from the spin-unpolarized Hartree–Fock state for each of the target systems, the self-consistency loop correctly leads to degenerate spin-polarized ground states. We examine the spectral functions in detail to find their commonalities and differences among the atoms by paying attention to the characteristics of the two approaches. It is demonstrated via the two approaches that calculations based on the density functional theory (DFT) can fail in predicting the orbital energy spectra for spherically symmetric systems. It is found that the two methods are quite reliable and useful beyond DFT.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29907036</pmid><doi>10.1063/1.5029535</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3379-3361</orcidid><orcidid>https://orcid.org/0000000333793361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-06, Vol.148 (22), p.224103-224103
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2056395039
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Clusters
Copper
Density functional theory
Electronic structure
Energy spectra
Mathematical analysis
Organic chemistry
Quantum chemistry
title Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Green%E2%80%99s%20functions%20for%20transition%20metal%20atoms%20using%20self-energy%20functional%20theory%20and%20coupled-cluster%20singles%20and%20doubles%20(CCSD)&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kosugi,%20Taichi&rft.date=2018-06-14&rft.volume=148&rft.issue=22&rft.spage=224103&rft.epage=224103&rft.pages=224103-224103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5029535&rft_dat=%3Cproquest_pubme%3E2056395039%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-a3006fc0f4735efd10e55aa8cdea3bec66ce5763e403005febfd3db915509c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088355644&rft_id=info:pmid/29907036&rfr_iscdi=true