Loading…
Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables
Detecting ocean-floor seismic activity is crucial for our understanding of the interior structure and dynamic behavior of the Earth. However, 70% of the planet's surface is covered by water and seismometers coverage is limited to a handful of permanent ocean bottom stations. We show that existi...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2018-08, Vol.361 (6401), p.486-490 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Detecting ocean-floor seismic activity is crucial for our understanding of the interior structure and dynamic behavior of the Earth. However, 70% of the planet's surface is covered by water and seismometers coverage is limited to a handful of permanent ocean bottom stations. We show that existing telecommunication optical fiber cables can detect seismic events when combined with state-of-the-art frequency metrology techniques by using the fiber itself as the sensing element. We detected earthquakes over terrestrial and submarine links with length ranging from 75 to 535 km and a geographical distance from the earthquake's epicenter ranging from 25 to 18,500 km. Implementing a global seismic network for real-time detection of underwater earthquakes requires applying the proposed technique to the existing extensive submarine optical fiber network. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aat4458 |