Loading…
Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments
In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2018-08, Vol.410 (21), p.5313-5327 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823 |
container_end_page | 5327 |
container_issue | 21 |
container_start_page | 5313 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 410 |
creator | Käppler, Andrea Fischer, Marten Scholz-Böttcher, Barbara M. Oberbeckmann, Sonja Labrenz, Matthias Fischer, Dieter Eichhorn, Klaus-Jochen Voit, Brigitte |
description | In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods. |
doi_str_mv | 10.1007/s00216-018-1185-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2056759145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056759145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVpaH7aB-gmCLrpRo0kW5K9DEP-YEogmayFRr4uCrbl6noC8xJ9oj5DnymanyRQyOrqou8c6XAI-Sr4D8G5OUPOpdCMi4oJUSmmPpAjofMmteIfX8-lPCTHiI-cC1UJ_YkcyrrmdanUEfkzi_3oUsA40NjSf3_Z-eKOXS5u7iiO4KcU0cdxTd3Q0HHNrmY_76lDGhoYptAG76aQlVOMHdI2JtoHn-LYOZyCp9k4jw5wK2_DElKWYuzcBHlPsacpPEGiCE3osyN-Jget6xC-7OcJebi8WMyu2fz26mZ2Pme-MHJisjDelL4ROXbOWslClboyhfZGCQG-Ncuy0YWUxteVAVFDqaE0S8kL08qMn5DvO98xxd8rwMn2AT10nRsgrtBKrrRRtShVRr_9hz7GVRry77YUN5JvKbGjcnzEBK0dU-hdWlvB7aYsuyvL5rLspiy70ZzunVfLHppXxUs7GZA7APPV8AvS29Pvuz4DFqefdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056072045</pqid></control><display><type>article</type><title>Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments</title><source>Springer Nature</source><creator>Käppler, Andrea ; Fischer, Marten ; Scholz-Böttcher, Barbara M. ; Oberbeckmann, Sonja ; Labrenz, Matthias ; Fischer, Dieter ; Eichhorn, Klaus-Jochen ; Voit, Brigitte</creator><creatorcontrib>Käppler, Andrea ; Fischer, Marten ; Scholz-Böttcher, Barbara M. ; Oberbeckmann, Sonja ; Labrenz, Matthias ; Fischer, Dieter ; Eichhorn, Klaus-Jochen ; Voit, Brigitte</creatorcontrib><description>In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-018-1185-5</identifier><identifier>PMID: 29909455</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complementarity ; Fibers ; Fluvial sediments ; Food Science ; Fourier transforms ; Gas chromatography ; Identification ; Identification methods ; Infrared reflection ; Infrared spectroscopy ; Laboratory Medicine ; Mass spectrometry ; Mass spectroscopy ; Microplastics ; Monitoring/Environmental Analysis ; Organic chemistry ; Plastics ; Polymers ; Pyrolysis ; Research Paper ; Rivers ; Sample preparation ; Sediments ; Water analysis</subject><ispartof>Analytical and bioanalytical chemistry, 2018-08, Vol.410 (21), p.5313-5327</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823</citedby><cites>FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29909455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Käppler, Andrea</creatorcontrib><creatorcontrib>Fischer, Marten</creatorcontrib><creatorcontrib>Scholz-Böttcher, Barbara M.</creatorcontrib><creatorcontrib>Oberbeckmann, Sonja</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Fischer, Dieter</creatorcontrib><creatorcontrib>Eichhorn, Klaus-Jochen</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><title>Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complementarity</subject><subject>Fibers</subject><subject>Fluvial sediments</subject><subject>Food Science</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Laboratory Medicine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microplastics</subject><subject>Monitoring/Environmental Analysis</subject><subject>Organic chemistry</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Research Paper</subject><subject>Rivers</subject><subject>Sample preparation</subject><subject>Sediments</subject><subject>Water analysis</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1q3DAUhUVpaH7aB-gmCLrpRo0kW5K9DEP-YEogmayFRr4uCrbl6noC8xJ9oj5DnymanyRQyOrqou8c6XAI-Sr4D8G5OUPOpdCMi4oJUSmmPpAjofMmteIfX8-lPCTHiI-cC1UJ_YkcyrrmdanUEfkzi_3oUsA40NjSf3_Z-eKOXS5u7iiO4KcU0cdxTd3Q0HHNrmY_76lDGhoYptAG76aQlVOMHdI2JtoHn-LYOZyCp9k4jw5wK2_DElKWYuzcBHlPsacpPEGiCE3osyN-Jget6xC-7OcJebi8WMyu2fz26mZ2Pme-MHJisjDelL4ROXbOWslClboyhfZGCQG-Ncuy0YWUxteVAVFDqaE0S8kL08qMn5DvO98xxd8rwMn2AT10nRsgrtBKrrRRtShVRr_9hz7GVRry77YUN5JvKbGjcnzEBK0dU-hdWlvB7aYsuyvL5rLspiy70ZzunVfLHppXxUs7GZA7APPV8AvS29Pvuz4DFqefdA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Käppler, Andrea</creator><creator>Fischer, Marten</creator><creator>Scholz-Böttcher, Barbara M.</creator><creator>Oberbeckmann, Sonja</creator><creator>Labrenz, Matthias</creator><creator>Fischer, Dieter</creator><creator>Eichhorn, Klaus-Jochen</creator><creator>Voit, Brigitte</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20180801</creationdate><title>Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments</title><author>Käppler, Andrea ; Fischer, Marten ; Scholz-Böttcher, Barbara M. ; Oberbeckmann, Sonja ; Labrenz, Matthias ; Fischer, Dieter ; Eichhorn, Klaus-Jochen ; Voit, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complementarity</topic><topic>Fibers</topic><topic>Fluvial sediments</topic><topic>Food Science</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Laboratory Medicine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microplastics</topic><topic>Monitoring/Environmental Analysis</topic><topic>Organic chemistry</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Research Paper</topic><topic>Rivers</topic><topic>Sample preparation</topic><topic>Sediments</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Käppler, Andrea</creatorcontrib><creatorcontrib>Fischer, Marten</creatorcontrib><creatorcontrib>Scholz-Böttcher, Barbara M.</creatorcontrib><creatorcontrib>Oberbeckmann, Sonja</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Fischer, Dieter</creatorcontrib><creatorcontrib>Eichhorn, Klaus-Jochen</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Käppler, Andrea</au><au>Fischer, Marten</au><au>Scholz-Böttcher, Barbara M.</au><au>Oberbeckmann, Sonja</au><au>Labrenz, Matthias</au><au>Fischer, Dieter</au><au>Eichhorn, Klaus-Jochen</au><au>Voit, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>410</volume><issue>21</issue><spage>5313</spage><epage>5327</epage><pages>5313-5327</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29909455</pmid><doi>10.1007/s00216-018-1185-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2018-08, Vol.410 (21), p.5313-5327 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2056759145 |
source | Springer Nature |
subjects | Analytical Chemistry Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complementarity Fibers Fluvial sediments Food Science Fourier transforms Gas chromatography Identification Identification methods Infrared reflection Infrared spectroscopy Laboratory Medicine Mass spectrometry Mass spectroscopy Microplastics Monitoring/Environmental Analysis Organic chemistry Plastics Polymers Pyrolysis Research Paper Rivers Sample preparation Sediments Water analysis |
title | Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20%CE%BC-ATR-FTIR%20spectroscopy%20and%20py-GCMS%20as%20identification%20tools%20for%20microplastic%20particles%20and%20fibers%20isolated%20from%20river%20sediments&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=K%C3%A4ppler,%20Andrea&rft.date=2018-08-01&rft.volume=410&rft.issue=21&rft.spage=5313&rft.epage=5327&rft.pages=5313-5327&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-018-1185-5&rft_dat=%3Cproquest_cross%3E2056759145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-237c74cd11182658235468736c7511ecf7b4d63227c987e19e46e47b2037f2823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056072045&rft_id=info:pmid/29909455&rfr_iscdi=true |