Loading…
Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells
Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a...
Saved in:
Published in: | Cancer immunology research 2018-08, Vol.6 (8), p.965-977 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3 |
container_end_page | 977 |
container_issue | 8 |
container_start_page | 965 |
container_title | Cancer immunology research |
container_volume | 6 |
creator | Wang, Qing-Ming Tang, Patrick Ming-Kuen Lian, Guang-Yu Li, Chunjie Li, Jinhong Huang, Xiao-Ru To, Ka-Fai Lan, Hui-Yao |
description | Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a stable SMAD3-silencing human NK cell line, NK-92-S3KD, whose cancer-killing activity and cytokine production were significantly enhanced under TGFβ1-rich condition compared with the parental cell line. Interestingly, we identified that the IFNG gene is a direct E4BP4 target gene. Thus, silencing of SMAD3 allows upregulation of E4BP4 that subsequently promoting interferon-γ (IFNγ) production in the NK-92-S3KD cells. More importantly, NK-92-S3KD immunotherapy increases the production of not only IFNγ, but also granzyme B and perforin in tumors; therefore, inhibiting cancer progression in two xenograft mouse models with human hepatoma (HepG2) and melanoma (A375). Thus, the NK-92-S3KD cell line may be useful for the clinical immunotherapy of cancer.
. |
doi_str_mv | 10.1158/2326-6066.CIR-17-0491 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057121037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057121037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9CUoefdm698uDDxKqFouC7fuyze7SSG5mE6T_3sTWzssZhnNmhg-AW4wWGHP1QCgRUCAhFunqE2IJEdP4AkxPc8kuz70QEzCP8QsNpRTDnF2DCdEac0TIFDwuq72tMu-SdJQ2WZVlX9Xd3re2OSQ_ebdPNqV1FG7ywv8Z39-gJknqiyLegKtgi-jnJ52B7fNym77C9cfLKn1aw4wh1UGtEGU7pTQhgfJAkfQycwIHRqR1zPJdQJIzK7ETzHpEvNDKOS0VZ4E7OgP3x7VNW3_3PnamzGM2PGArX_fREMQlJhhROVj50Zq1dYytD6Zp89K2B4ORGdmZkYsZuZiBncHSjOyG3N3pRL8rvTun_knRX1xNZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057121037</pqid></control><display><type>article</type><title>Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells</title><source>EZB Free E-Journals</source><creator>Wang, Qing-Ming ; Tang, Patrick Ming-Kuen ; Lian, Guang-Yu ; Li, Chunjie ; Li, Jinhong ; Huang, Xiao-Ru ; To, Ka-Fai ; Lan, Hui-Yao</creator><creatorcontrib>Wang, Qing-Ming ; Tang, Patrick Ming-Kuen ; Lian, Guang-Yu ; Li, Chunjie ; Li, Jinhong ; Huang, Xiao-Ru ; To, Ka-Fai ; Lan, Hui-Yao</creatorcontrib><description>Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a stable SMAD3-silencing human NK cell line, NK-92-S3KD, whose cancer-killing activity and cytokine production were significantly enhanced under TGFβ1-rich condition compared with the parental cell line. Interestingly, we identified that the IFNG gene is a direct E4BP4 target gene. Thus, silencing of SMAD3 allows upregulation of E4BP4 that subsequently promoting interferon-γ (IFNγ) production in the NK-92-S3KD cells. More importantly, NK-92-S3KD immunotherapy increases the production of not only IFNγ, but also granzyme B and perforin in tumors; therefore, inhibiting cancer progression in two xenograft mouse models with human hepatoma (HepG2) and melanoma (A375). Thus, the NK-92-S3KD cell line may be useful for the clinical immunotherapy of cancer.
.</description><identifier>ISSN: 2326-6066</identifier><identifier>EISSN: 2326-6074</identifier><identifier>DOI: 10.1158/2326-6066.CIR-17-0491</identifier><identifier>PMID: 29915022</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cell Line ; Extracellular Matrix Proteins - immunology ; Gene Silencing ; Genetic Engineering - methods ; Humans ; Immunotherapy - methods ; Interferon-gamma - biosynthesis ; Killer Cells, Natural - immunology ; Liver Neoplasms, Experimental - immunology ; Liver Neoplasms, Experimental - therapy ; Melanoma, Experimental - immunology ; Melanoma, Experimental - therapy ; Mice, Inbred NOD ; Mice, Knockout ; Smad3 Protein - genetics ; Smad3 Protein - immunology ; Transforming Growth Factor beta - immunology ; Tumor Microenvironment - immunology ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer immunology research, 2018-08, Vol.6 (8), p.965-977</ispartof><rights>2018 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3</citedby><cites>FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3</cites><orcidid>0000-0003-4283-9755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29915022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qing-Ming</creatorcontrib><creatorcontrib>Tang, Patrick Ming-Kuen</creatorcontrib><creatorcontrib>Lian, Guang-Yu</creatorcontrib><creatorcontrib>Li, Chunjie</creatorcontrib><creatorcontrib>Li, Jinhong</creatorcontrib><creatorcontrib>Huang, Xiao-Ru</creatorcontrib><creatorcontrib>To, Ka-Fai</creatorcontrib><creatorcontrib>Lan, Hui-Yao</creatorcontrib><title>Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells</title><title>Cancer immunology research</title><addtitle>Cancer Immunol Res</addtitle><description>Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a stable SMAD3-silencing human NK cell line, NK-92-S3KD, whose cancer-killing activity and cytokine production were significantly enhanced under TGFβ1-rich condition compared with the parental cell line. Interestingly, we identified that the IFNG gene is a direct E4BP4 target gene. Thus, silencing of SMAD3 allows upregulation of E4BP4 that subsequently promoting interferon-γ (IFNγ) production in the NK-92-S3KD cells. More importantly, NK-92-S3KD immunotherapy increases the production of not only IFNγ, but also granzyme B and perforin in tumors; therefore, inhibiting cancer progression in two xenograft mouse models with human hepatoma (HepG2) and melanoma (A375). Thus, the NK-92-S3KD cell line may be useful for the clinical immunotherapy of cancer.
.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Extracellular Matrix Proteins - immunology</subject><subject>Gene Silencing</subject><subject>Genetic Engineering - methods</subject><subject>Humans</subject><subject>Immunotherapy - methods</subject><subject>Interferon-gamma - biosynthesis</subject><subject>Killer Cells, Natural - immunology</subject><subject>Liver Neoplasms, Experimental - immunology</subject><subject>Liver Neoplasms, Experimental - therapy</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - therapy</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - immunology</subject><subject>Transforming Growth Factor beta - immunology</subject><subject>Tumor Microenvironment - immunology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2326-6066</issn><issn>2326-6074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9CUoefdm698uDDxKqFouC7fuyze7SSG5mE6T_3sTWzssZhnNmhg-AW4wWGHP1QCgRUCAhFunqE2IJEdP4AkxPc8kuz70QEzCP8QsNpRTDnF2DCdEac0TIFDwuq72tMu-SdJQ2WZVlX9Xd3re2OSQ_ebdPNqV1FG7ywv8Z39-gJknqiyLegKtgi-jnJ52B7fNym77C9cfLKn1aw4wh1UGtEGU7pTQhgfJAkfQycwIHRqR1zPJdQJIzK7ETzHpEvNDKOS0VZ4E7OgP3x7VNW3_3PnamzGM2PGArX_fREMQlJhhROVj50Zq1dYytD6Zp89K2B4ORGdmZkYsZuZiBncHSjOyG3N3pRL8rvTun_knRX1xNZ2w</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wang, Qing-Ming</creator><creator>Tang, Patrick Ming-Kuen</creator><creator>Lian, Guang-Yu</creator><creator>Li, Chunjie</creator><creator>Li, Jinhong</creator><creator>Huang, Xiao-Ru</creator><creator>To, Ka-Fai</creator><creator>Lan, Hui-Yao</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4283-9755</orcidid></search><sort><creationdate>201808</creationdate><title>Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells</title><author>Wang, Qing-Ming ; Tang, Patrick Ming-Kuen ; Lian, Guang-Yu ; Li, Chunjie ; Li, Jinhong ; Huang, Xiao-Ru ; To, Ka-Fai ; Lan, Hui-Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Extracellular Matrix Proteins - immunology</topic><topic>Gene Silencing</topic><topic>Genetic Engineering - methods</topic><topic>Humans</topic><topic>Immunotherapy - methods</topic><topic>Interferon-gamma - biosynthesis</topic><topic>Killer Cells, Natural - immunology</topic><topic>Liver Neoplasms, Experimental - immunology</topic><topic>Liver Neoplasms, Experimental - therapy</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - therapy</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - immunology</topic><topic>Transforming Growth Factor beta - immunology</topic><topic>Tumor Microenvironment - immunology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing-Ming</creatorcontrib><creatorcontrib>Tang, Patrick Ming-Kuen</creatorcontrib><creatorcontrib>Lian, Guang-Yu</creatorcontrib><creatorcontrib>Li, Chunjie</creatorcontrib><creatorcontrib>Li, Jinhong</creatorcontrib><creatorcontrib>Huang, Xiao-Ru</creatorcontrib><creatorcontrib>To, Ka-Fai</creatorcontrib><creatorcontrib>Lan, Hui-Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer immunology research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing-Ming</au><au>Tang, Patrick Ming-Kuen</au><au>Lian, Guang-Yu</au><au>Li, Chunjie</au><au>Li, Jinhong</au><au>Huang, Xiao-Ru</au><au>To, Ka-Fai</au><au>Lan, Hui-Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells</atitle><jtitle>Cancer immunology research</jtitle><addtitle>Cancer Immunol Res</addtitle><date>2018-08</date><risdate>2018</risdate><volume>6</volume><issue>8</issue><spage>965</spage><epage>977</epage><pages>965-977</pages><issn>2326-6066</issn><eissn>2326-6074</eissn><abstract>Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a stable SMAD3-silencing human NK cell line, NK-92-S3KD, whose cancer-killing activity and cytokine production were significantly enhanced under TGFβ1-rich condition compared with the parental cell line. Interestingly, we identified that the IFNG gene is a direct E4BP4 target gene. Thus, silencing of SMAD3 allows upregulation of E4BP4 that subsequently promoting interferon-γ (IFNγ) production in the NK-92-S3KD cells. More importantly, NK-92-S3KD immunotherapy increases the production of not only IFNγ, but also granzyme B and perforin in tumors; therefore, inhibiting cancer progression in two xenograft mouse models with human hepatoma (HepG2) and melanoma (A375). Thus, the NK-92-S3KD cell line may be useful for the clinical immunotherapy of cancer.
.</abstract><cop>United States</cop><pmid>29915022</pmid><doi>10.1158/2326-6066.CIR-17-0491</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4283-9755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2326-6066 |
ispartof | Cancer immunology research, 2018-08, Vol.6 (8), p.965-977 |
issn | 2326-6066 2326-6074 |
language | eng |
recordid | cdi_proquest_miscellaneous_2057121037 |
source | EZB Free E-Journals |
subjects | Animals Cell Line Extracellular Matrix Proteins - immunology Gene Silencing Genetic Engineering - methods Humans Immunotherapy - methods Interferon-gamma - biosynthesis Killer Cells, Natural - immunology Liver Neoplasms, Experimental - immunology Liver Neoplasms, Experimental - therapy Melanoma, Experimental - immunology Melanoma, Experimental - therapy Mice, Inbred NOD Mice, Knockout Smad3 Protein - genetics Smad3 Protein - immunology Transforming Growth Factor beta - immunology Tumor Microenvironment - immunology Xenograft Model Antitumor Assays |
title | Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Cancer%20Immunotherapy%20with%20Smad3-Silenced%20NK-92%20Cells&rft.jtitle=Cancer%20immunology%20research&rft.au=Wang,%20Qing-Ming&rft.date=2018-08&rft.volume=6&rft.issue=8&rft.spage=965&rft.epage=977&rft.pages=965-977&rft.issn=2326-6066&rft.eissn=2326-6074&rft_id=info:doi/10.1158/2326-6066.CIR-17-0491&rft_dat=%3Cproquest_cross%3E2057121037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-98034b88922f35f307e7cd61f427ad4a5bf0754a71d64ae02e698dd97854f5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057121037&rft_id=info:pmid/29915022&rfr_iscdi=true |