Loading…

Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks

The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more a...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2008-03, Vol.480 (3), p.859-877
Main Authors: Brauer, F., Dullemond, C. P., Henning, Th
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk (30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361:20077759