Loading…
Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks
The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more a...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2008-03, Vol.480 (3), p.859-877 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3 |
container_end_page | 877 |
container_issue | 3 |
container_start_page | 859 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 480 |
creator | Brauer, F. Dullemond, C. P. Henning, Th |
description | The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk (30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104. |
doi_str_mv | 10.1051/0004-6361:20077759 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20574928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20574928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_wKvc6JXVfDRN450Mv2AojMkuw2majriumUkH-u9N3dxVOMnzHt48CF1SckuJoHeEkDwreEHvGSFSSqGO0IjmnGVE5sUxGh2AU3QW42caGS35CC0mHpbbFnrnuxvcBFiubdf_jRi6GgeoHbR47f9ufIOjb12NNxB6Z1obsevwJvjeb1robA_hB9curuI5OmmgjfZif47Rx9PjfPKSTd-fXycP08zkougzoCUxwMqaiRKI5SpvDFhJiwpE3oBQSnLZSKCMCMiZoKUpeUXrqqKKVGD4GF3v9qYSX1sbe7120dh2aOO3UaeczBUrE8h2oAk-xmAbvQlunfpqSvTgUA-K9KBI_ztMoav9dogG2qSnMy4ekoxQWVAiE5ftOBd7-314h7DSRfqA0CVZaKVmMzUv3jTnv0-SgOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20574928</pqid></control><display><type>article</type><title>Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Brauer, F. ; Dullemond, C. P. ; Henning, Th</creator><creatorcontrib>Brauer, F. ; Dullemond, C. P. ; Henning, Th</creatorcontrib><description>The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk (<2 AU) within 104 yrs. However, we find that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20077759</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>accretion ; accretion disks ; Astronomy ; circumstellar matter ; Earth, ocean, space ; Exact sciences and technology ; infrared: stars ; planetary systems: protoplanetary disks ; stars: formation ; stars: pre-main-sequence</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-03, Vol.480 (3), p.859-877</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3</citedby><cites>FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20176107$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brauer, F.</creatorcontrib><creatorcontrib>Dullemond, C. P.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><title>Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks</title><title>Astronomy and astrophysics (Berlin)</title><description>The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk (<2 AU) within 104 yrs. However, we find that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104.</description><subject>accretion</subject><subject>accretion disks</subject><subject>Astronomy</subject><subject>circumstellar matter</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>infrared: stars</subject><subject>planetary systems: protoplanetary disks</subject><subject>stars: formation</subject><subject>stars: pre-main-sequence</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_wKvc6JXVfDRN450Mv2AojMkuw2majriumUkH-u9N3dxVOMnzHt48CF1SckuJoHeEkDwreEHvGSFSSqGO0IjmnGVE5sUxGh2AU3QW42caGS35CC0mHpbbFnrnuxvcBFiubdf_jRi6GgeoHbR47f9ufIOjb12NNxB6Z1obsevwJvjeb1robA_hB9curuI5OmmgjfZif47Rx9PjfPKSTd-fXycP08zkougzoCUxwMqaiRKI5SpvDFhJiwpE3oBQSnLZSKCMCMiZoKUpeUXrqqKKVGD4GF3v9qYSX1sbe7120dh2aOO3UaeczBUrE8h2oAk-xmAbvQlunfpqSvTgUA-K9KBI_ztMoav9dogG2qSnMy4ekoxQWVAiE5ftOBd7-314h7DSRfqA0CVZaKVmMzUv3jTnv0-SgOM</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Brauer, F.</creator><creator>Dullemond, C. P.</creator><creator>Henning, Th</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080301</creationdate><title>Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks</title><author>Brauer, F. ; Dullemond, C. P. ; Henning, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>accretion</topic><topic>accretion disks</topic><topic>Astronomy</topic><topic>circumstellar matter</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>infrared: stars</topic><topic>planetary systems: protoplanetary disks</topic><topic>stars: formation</topic><topic>stars: pre-main-sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brauer, F.</creatorcontrib><creatorcontrib>Dullemond, C. P.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brauer, F.</au><au>Dullemond, C. P.</au><au>Henning, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>480</volume><issue>3</issue><spage>859</spage><epage>877</epage><pages>859-877</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk (<2 AU) within 104 yrs. However, we find that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20077759</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2008-03, Vol.480 (3), p.859-877 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_miscellaneous_20574928 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | accretion accretion disks Astronomy circumstellar matter Earth, ocean, space Exact sciences and technology infrared: stars planetary systems: protoplanetary disks stars: formation stars: pre-main-sequence |
title | Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coagulation,%20fragmentation%20and%20radial%20motion%20of%20solid%20particles%20in%20protoplanetary%20disks&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Brauer,%20F.&rft.date=2008-03-01&rft.volume=480&rft.issue=3&rft.spage=859&rft.epage=877&rft.pages=859-877&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20077759&rft_dat=%3Cproquest_cross%3E20574928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-a180ca28d258a0e394fcae716ba54fa599737f7a1205a42518c83b1dbb190bac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20574928&rft_id=info:pmid/&rfr_iscdi=true |