Loading…
Enteral Feeding Set Handling Techniques: A Comparison of Bacterial Growth, Nursing Time, Labor, and Material Costs
Background: Enteral nutrition therapy is common practice in pediatric clinical settings. Often patients will receive a pump-assisted bolus feeding over 30 minutes several times per day using the same enteral feeding set (EFS). This study aims to determine the safest and most efficacious way to handl...
Saved in:
Published in: | Nutrition in clinical practice 2017-04, Vol.32 (2), p.193-200 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Enteral nutrition therapy is common practice in pediatric clinical settings. Often patients will receive a pump-assisted bolus feeding over 30 minutes several times per day using the same enteral feeding set (EFS). This study aims to determine the safest and most efficacious way to handle the EFS between feedings. Methods: Three EFS handling techniques were compared through simulation for bacterial growth, nursing time, and supply costs: (1) rinsing the EFS with sterile water after each feeding, (2) refrigerating the EFS between feedings, and (3) using a ready-to-hang (RTH) product maintained at room temperature. Cultures were obtained at baseline, hour 12, and hour 21 of the 24-hour cycle. A time-in-motion analysis was conducted and reported in average number of seconds to complete each procedure. Supply costs were inventoried for 1 month comparing the actual usage to our estimated usage. Results: Of 1080 cultures obtained, the overall bacterial growth rate was 8.7%. The rinse and refrigeration techniques displayed similar bacterial growth (11.4% vs 10.3%, P = .63). The RTH technique displayed the least bacterial growth of any method (4.4%, P = .002). The time analysis in minutes showed the rinse method was the most time-consuming (44.8 ± 2.7) vs refrigeration (35.8 ± 2.6) and RTH (31.08 ± 0.6) (P < .0001). Conclusions: All 3 EFS handling techniques displayed low bacterial growth. RTH was superior in bacterial growth, nursing time, and supply costs. Since not all pediatric formulas are available in RTH, we conclude that refrigerating the EFS between uses is the next most efficacious method for handling the EFS between bolus feeds. |
---|---|
ISSN: | 0884-5336 1941-2452 |
DOI: | 10.1177/0884533616680840 |