Loading…

Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials

Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2018-08, Vol.30 (32), p.e1800881-n/a
Main Authors: Liu, Yintu, Fu, Chenguang, Xia, Kaiyang, Yu, Junjie, Zhao, Xinbing, Pan, Hongge, Felser, Claudia, Zhu, Tiejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3
cites cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3
container_end_page n/a
container_issue 32
container_start_page e1800881
container_title Advanced materials (Weinheim)
container_volume 30
creator Liu, Yintu
Fu, Chenguang
Xia, Kaiyang
Yu, Junjie
Zhao, Xinbing
Pan, Hongge
Felser, Claudia
Zhu, Tiejun
description Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance. Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.
doi_str_mv 10.1002/adma.201800881
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2059042161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059042161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0IFA6SNmVkiYZmj7HX3rXL0_FxkQ5BQeqVzx5zRvtB7F1FdPkJ_EZ-CUYHREqTYvRqRs-8Gs1LyDcGcwbAT43rzJwDUwBKsU9kxiRnhQAt98gMdCkLXQl1QA5TugcAXUH1mRxwrUsteD0j27Xpx63pg0O6HPoxGjuGoacmUUPPMIW7nl7k2RCpz7UKd9vnP083GHPXmd4iXZnW59EKp9RipLdbjN2ALdoxBkuvzIgxmDZ9Ifs-C3590yPy8-L8drkq1teXP5aLdWFFqVnBXG2Vts6Dq-vSCCu85hvupLRSG-e90FhvNnUNqLRQFl1leSkslsCAa18ekZOd70Mcfk2YxqYLyWLbmh6HKTUcpAbBWcUyevwPej9Msc_XZUqVlZJS15ma7ygbh5Qi-uYhhs7Ex4ZB85pB85pB85FBXvj-ZjttOnQf-PvTM6B3wO_Q4uN_7JrF2dXir_kLgYKVTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083685597</pqid></control><display><type>article</type><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</creator><creatorcontrib>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</creatorcontrib><description>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance. Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201800881</identifier><identifier>PMID: 29939427</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alloy development ; alloy scattering ; Atomic properties ; Atomic radius ; Carrier mobility ; Design factors ; half‐Heusler ; Heat conductivity ; Heat transfer ; Heusler alloys ; lanthanide contraction ; Materials science ; Niobium ; Solid solutions ; Tantalum ; Thermal conductivity ; Thermoelectric materials ; thermoelectrics ; Variation ; Zirconium</subject><ispartof>Advanced materials (Weinheim), 2018-08, Vol.30 (32), p.e1800881-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</citedby><cites>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</cites><orcidid>0000-0002-3868-0633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29939427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yintu</creatorcontrib><creatorcontrib>Fu, Chenguang</creatorcontrib><creatorcontrib>Xia, Kaiyang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Zhao, Xinbing</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Zhu, Tiejun</creatorcontrib><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance. Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</description><subject>Alloy development</subject><subject>alloy scattering</subject><subject>Atomic properties</subject><subject>Atomic radius</subject><subject>Carrier mobility</subject><subject>Design factors</subject><subject>half‐Heusler</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heusler alloys</subject><subject>lanthanide contraction</subject><subject>Materials science</subject><subject>Niobium</subject><subject>Solid solutions</subject><subject>Tantalum</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Variation</subject><subject>Zirconium</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PHDEQhq0IFA6SNmVkiYZmj7HX3rXL0_FxkQ5BQeqVzx5zRvtB7F1FdPkJ_EZ-CUYHREqTYvRqRs-8Gs1LyDcGcwbAT43rzJwDUwBKsU9kxiRnhQAt98gMdCkLXQl1QA5TugcAXUH1mRxwrUsteD0j27Xpx63pg0O6HPoxGjuGoacmUUPPMIW7nl7k2RCpz7UKd9vnP083GHPXmd4iXZnW59EKp9RipLdbjN2ALdoxBkuvzIgxmDZ9Ifs-C3590yPy8-L8drkq1teXP5aLdWFFqVnBXG2Vts6Dq-vSCCu85hvupLRSG-e90FhvNnUNqLRQFl1leSkslsCAa18ekZOd70Mcfk2YxqYLyWLbmh6HKTUcpAbBWcUyevwPej9Msc_XZUqVlZJS15ma7ygbh5Qi-uYhhs7Ex4ZB85pB85pB85FBXvj-ZjttOnQf-PvTM6B3wO_Q4uN_7JrF2dXir_kLgYKVTg</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Liu, Yintu</creator><creator>Fu, Chenguang</creator><creator>Xia, Kaiyang</creator><creator>Yu, Junjie</creator><creator>Zhao, Xinbing</creator><creator>Pan, Hongge</creator><creator>Felser, Claudia</creator><creator>Zhu, Tiejun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3868-0633</orcidid></search><sort><creationdate>20180809</creationdate><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><author>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloy development</topic><topic>alloy scattering</topic><topic>Atomic properties</topic><topic>Atomic radius</topic><topic>Carrier mobility</topic><topic>Design factors</topic><topic>half‐Heusler</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heusler alloys</topic><topic>lanthanide contraction</topic><topic>Materials science</topic><topic>Niobium</topic><topic>Solid solutions</topic><topic>Tantalum</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Variation</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yintu</creatorcontrib><creatorcontrib>Fu, Chenguang</creatorcontrib><creatorcontrib>Xia, Kaiyang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Zhao, Xinbing</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Zhu, Tiejun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yintu</au><au>Fu, Chenguang</au><au>Xia, Kaiyang</au><au>Yu, Junjie</au><au>Zhao, Xinbing</au><au>Pan, Hongge</au><au>Felser, Claudia</au><au>Zhu, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-08-09</date><risdate>2018</risdate><volume>30</volume><issue>32</issue><spage>e1800881</spage><epage>n/a</epage><pages>e1800881-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance. Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29939427</pmid><doi>10.1002/adma.201800881</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3868-0633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-08, Vol.30 (32), p.e1800881-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2059042161
source Wiley-Blackwell Read & Publish Collection
subjects Alloy development
alloy scattering
Atomic properties
Atomic radius
Carrier mobility
Design factors
half‐Heusler
Heat conductivity
Heat transfer
Heusler alloys
lanthanide contraction
Materials science
Niobium
Solid solutions
Tantalum
Thermal conductivity
Thermoelectric materials
thermoelectrics
Variation
Zirconium
title Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanthanide%20Contraction%20as%20a%20Design%20Factor%20for%20High%E2%80%90Performance%20Half%E2%80%90Heusler%20Thermoelectric%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Yintu&rft.date=2018-08-09&rft.volume=30&rft.issue=32&rft.spage=e1800881&rft.epage=n/a&rft.pages=e1800881-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201800881&rft_dat=%3Cproquest_cross%3E2059042161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083685597&rft_id=info:pmid/29939427&rfr_iscdi=true