Loading…
Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials
Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a...
Saved in:
Published in: | Advanced materials (Weinheim) 2018-08, Vol.30 (32), p.e1800881-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3 |
container_end_page | n/a |
container_issue | 32 |
container_start_page | e1800881 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Liu, Yintu Fu, Chenguang Xia, Kaiyang Yu, Junjie Zhao, Xinbing Pan, Hongge Felser, Claudia Zhu, Tiejun |
description | Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance.
Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility. |
doi_str_mv | 10.1002/adma.201800881 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2059042161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059042161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0IFA6SNmVkiYZmj7HX3rXL0_FxkQ5BQeqVzx5zRvtB7F1FdPkJ_EZ-CUYHREqTYvRqRs-8Gs1LyDcGcwbAT43rzJwDUwBKsU9kxiRnhQAt98gMdCkLXQl1QA5TugcAXUH1mRxwrUsteD0j27Xpx63pg0O6HPoxGjuGoacmUUPPMIW7nl7k2RCpz7UKd9vnP083GHPXmd4iXZnW59EKp9RipLdbjN2ALdoxBkuvzIgxmDZ9Ifs-C3590yPy8-L8drkq1teXP5aLdWFFqVnBXG2Vts6Dq-vSCCu85hvupLRSG-e90FhvNnUNqLRQFl1leSkslsCAa18ekZOd70Mcfk2YxqYLyWLbmh6HKTUcpAbBWcUyevwPej9Msc_XZUqVlZJS15ma7ygbh5Qi-uYhhs7Ex4ZB85pB85pB85FBXvj-ZjttOnQf-PvTM6B3wO_Q4uN_7JrF2dXir_kLgYKVTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083685597</pqid></control><display><type>article</type><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</creator><creatorcontrib>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</creatorcontrib><description>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance.
Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201800881</identifier><identifier>PMID: 29939427</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alloy development ; alloy scattering ; Atomic properties ; Atomic radius ; Carrier mobility ; Design factors ; half‐Heusler ; Heat conductivity ; Heat transfer ; Heusler alloys ; lanthanide contraction ; Materials science ; Niobium ; Solid solutions ; Tantalum ; Thermal conductivity ; Thermoelectric materials ; thermoelectrics ; Variation ; Zirconium</subject><ispartof>Advanced materials (Weinheim), 2018-08, Vol.30 (32), p.e1800881-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</citedby><cites>FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</cites><orcidid>0000-0002-3868-0633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29939427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yintu</creatorcontrib><creatorcontrib>Fu, Chenguang</creatorcontrib><creatorcontrib>Xia, Kaiyang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Zhao, Xinbing</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Zhu, Tiejun</creatorcontrib><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance.
Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</description><subject>Alloy development</subject><subject>alloy scattering</subject><subject>Atomic properties</subject><subject>Atomic radius</subject><subject>Carrier mobility</subject><subject>Design factors</subject><subject>half‐Heusler</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heusler alloys</subject><subject>lanthanide contraction</subject><subject>Materials science</subject><subject>Niobium</subject><subject>Solid solutions</subject><subject>Tantalum</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Variation</subject><subject>Zirconium</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PHDEQhq0IFA6SNmVkiYZmj7HX3rXL0_FxkQ5BQeqVzx5zRvtB7F1FdPkJ_EZ-CUYHREqTYvRqRs-8Gs1LyDcGcwbAT43rzJwDUwBKsU9kxiRnhQAt98gMdCkLXQl1QA5TugcAXUH1mRxwrUsteD0j27Xpx63pg0O6HPoxGjuGoacmUUPPMIW7nl7k2RCpz7UKd9vnP083GHPXmd4iXZnW59EKp9RipLdbjN2ALdoxBkuvzIgxmDZ9Ifs-C3590yPy8-L8drkq1teXP5aLdWFFqVnBXG2Vts6Dq-vSCCu85hvupLRSG-e90FhvNnUNqLRQFl1leSkslsCAa18ekZOd70Mcfk2YxqYLyWLbmh6HKTUcpAbBWcUyevwPej9Msc_XZUqVlZJS15ma7ygbh5Qi-uYhhs7Ex4ZB85pB85pB85FBXvj-ZjttOnQf-PvTM6B3wO_Q4uN_7JrF2dXir_kLgYKVTg</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Liu, Yintu</creator><creator>Fu, Chenguang</creator><creator>Xia, Kaiyang</creator><creator>Yu, Junjie</creator><creator>Zhao, Xinbing</creator><creator>Pan, Hongge</creator><creator>Felser, Claudia</creator><creator>Zhu, Tiejun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3868-0633</orcidid></search><sort><creationdate>20180809</creationdate><title>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</title><author>Liu, Yintu ; Fu, Chenguang ; Xia, Kaiyang ; Yu, Junjie ; Zhao, Xinbing ; Pan, Hongge ; Felser, Claudia ; Zhu, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloy development</topic><topic>alloy scattering</topic><topic>Atomic properties</topic><topic>Atomic radius</topic><topic>Carrier mobility</topic><topic>Design factors</topic><topic>half‐Heusler</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heusler alloys</topic><topic>lanthanide contraction</topic><topic>Materials science</topic><topic>Niobium</topic><topic>Solid solutions</topic><topic>Tantalum</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Variation</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yintu</creatorcontrib><creatorcontrib>Fu, Chenguang</creatorcontrib><creatorcontrib>Xia, Kaiyang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Zhao, Xinbing</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Zhu, Tiejun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yintu</au><au>Fu, Chenguang</au><au>Xia, Kaiyang</au><au>Yu, Junjie</au><au>Zhao, Xinbing</au><au>Pan, Hongge</au><au>Felser, Claudia</au><au>Zhu, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-08-09</date><risdate>2018</risdate><volume>30</volume><issue>32</issue><spage>e1800881</spage><epage>n/a</epage><pages>e1800881-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half‐Heusler alloys, n‐type (Zr,Hf)NiSn and p‐type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n‐type (Zr,Hf)CoSb‐based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb‐based half‐Heusler compounds due to the matched n‐type and p‐type thermoelectric performance.
Lanthanide contraction is suggested as an intuitive consideration for selecting alloying atoms that have large mass fluctuation but small radius difference with the host atoms. In this vein, high‐performance n‐type Hf alloyed ZrCoSb‐based solid solutions are designed and verified, resulting in a high zT of ≈1.0, due to the largely suppressed lattice thermal conductivity and nondegraded carrier mobility.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29939427</pmid><doi>10.1002/adma.201800881</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3868-0633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-08, Vol.30 (32), p.e1800881-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2059042161 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alloy development alloy scattering Atomic properties Atomic radius Carrier mobility Design factors half‐Heusler Heat conductivity Heat transfer Heusler alloys lanthanide contraction Materials science Niobium Solid solutions Tantalum Thermal conductivity Thermoelectric materials thermoelectrics Variation Zirconium |
title | Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanthanide%20Contraction%20as%20a%20Design%20Factor%20for%20High%E2%80%90Performance%20Half%E2%80%90Heusler%20Thermoelectric%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Yintu&rft.date=2018-08-09&rft.volume=30&rft.issue=32&rft.spage=e1800881&rft.epage=n/a&rft.pages=e1800881-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201800881&rft_dat=%3Cproquest_cross%3E2059042161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4391-1d7c89cdf0d773a4c4f92b2d55c59adff49e7bb770e8948ced6c234ce301029f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083685597&rft_id=info:pmid/29939427&rfr_iscdi=true |